

NONLINEAR SYSTEM IDENTIFICATION VIA TENSOR COMPLETION

Nikos Kargas and Nicholas D. Sidiropoulos

The Supervised Learning Problem

General nonlinear function identification Supervised' - from input-output data Function approximation problem Identifiability? Performance? Complexity?

Applications

- Machine learning
- Dynamical system identification and control Communications

► y x_3

Categorical (classification) Real-valued (regression)

Drug response prediction

Canonical System Identification (CSID)

We propose:

Claims:

Single high-order tensor for learning a general nonlinear system

- •CPD can model *any* nonlinearity (even of ∞ order) for high-enough rank. Even for low ranks, it can model highly nonlinear operators
- Provably correct nonlinear system identification from limited samples, when the tensor is low rank
- •Even when not low rank \implies identification of the principal components!

Course grade prediction

Text classification

Neural Networks

- Most popular method for learning to mimic nonlinear functions
- Work very well in practice
- Don't understand why they work so well Choosing architecture is art
- Hard to interpret

Rank of Generic Nonlinear Systems • Separable function: $y = f(x_1, \dots, x_N) = \prod_{n=1}^N f_n(x_n)$

Rank: 1, e.g., $f(x_1, ..., x_N) = \prod_{n=1}^N \operatorname{sign}(x_n)$

- Sum of separable functions: $y = f(x_1, \ldots, x_N) = \sum_{n=1}^N f_n(x_n)$ • Maximal rank: N, e.g., $f(x_1, \ldots, x_N) = \sum_{n=1}^N \operatorname{sign}(x_n)$
- Sum of pairwise functions $y = f(x_1, ..., x_N) = \sum_{i=1}^N \sum_{j>i} f_{ij}(x_i, x_j)$ • Maximal rank: $\frac{IN^2}{2} \ll I^{N-1}$

Problem Formulation

Smooth Tensor Completion

$$\min_{\mathcal{X}, \{\mathbf{A}_n\}_{n=1}^N} \frac{1}{M} \left\| \sqrt{\mathcal{W}} \circledast (\mathcal{Y} - \mathcal{X}) \right\|_F^2 + \sum_{n=1}^N \rho \|\mathbf{A}_n\|_F^2 + \sum_{n=1}^N \mu_n \|\mathbf{T}_n \mathbf{A}_n\|_F^2$$

subject to $\mathcal{X} = \sum_{f=1}^F \mathbf{A}_1(:, f) \odot \cdots \odot \mathbf{A}_N(:, f),$

$$\mathbf{T}_{n} = \begin{bmatrix} 1 & -1 & & & \\ & 1 & -1 & & \\ & & \ddots & \ddots & \\ & & & 1 & -1 \end{bmatrix} \quad \text{or} \quad \mathbf{T}_{n} = \begin{bmatrix} 1 & -2 & 1 & & & \\ & 1 & -2 & 1 & & \\ & & \ddots & \ddots & \ddots & \\ & & & 1 & -2 & 1 \end{bmatrix}$$

Alternating minimization

Background

Canonical Polyadic Decomposition (CPD)

An N-way tensor admits a decomposition of rank F it can be decomposed as a sum of *F* rank-1 tensors

• Tensor rank is smallest F for which such decomposition exists \rightarrow Canonical • Element-wise: $\mathcal{X}(i_1, \ldots, i_N) = \sum_{f=1}^F \prod_{n=1}^N \mathbf{a}_f^n(i_n)$

- Matrix unfolding: $\mathcal{X}^{(n)} = (\mathbf{A}_N \odot \cdots \odot \mathbf{A}_{n+1} \odot \mathbf{A}_{n-1} \cdots \odot \cdots \mathbf{A}_1) \mathbf{A}_n^T$
- Vector $\operatorname{vec}(\mathcal{X}) = (\mathbf{A}_N \odot \cdots \odot \mathbf{A}_1)\mathbf{1}$

Prior Work

- Tensor modeling of low-order multivariate polynomial systems
- A multivariate polynomial of order d is represented by a tensor of order d

Drawbacks

Require prior knowledge of polynomial order

- •Assuming polynomial of a given degree can be restrictive

- Exploit sparsity
- Cyclically update variables
- Lightweight row-wise updates

Experimental Results

Baselines: Ridge Regression (RR), Support Vector Regression (SVR), Decision Tree (DT), Neural network: multilayer perceptron (MLP)

Dataset	RR	SVR (RBF)	SVR (polynomial)	DT	MLP (5 Layer)	CSID
Energy Eff. (1)	$2.91{\pm}0.17$	$2.68{\pm}0.17$	4.09 ± 0.49	$0.56{\pm}0.03$	$0.48{\pm}0.06~[50]$	$0.39{\pm}0.05$
Energy Eff. (2)	$3.09{\pm}0.19$	$3.03{\pm}0.21$	$4.14{\pm}0.44$	$1.86{\pm}0.19$	$0.97{\pm}0.14~[50]$	$0.57{\pm}0.09$
C. Comp. Strength	10.47 ± 0.42	$9.72{\pm}0.38$	$11.30{\pm}0.36$	$6.57{\pm}0.82$	$4.92{\pm}0.63~[50]$	$4.67{\pm}0.50$
SkillCraft Master Table	$1.68{\pm}1.61$	$0.99{\pm}0.03$	$1.22{\pm}0.05$	1.03 ± 0.04	$1.00{\pm}0.03$ [10]	$0.91{\pm}0.02$
Abalone	$2.25{\pm}0.10$	$2.19{\pm}0.08$	$3.90{\pm}3.43$	$2.35{\pm}0.08$	$2.09{\pm}0.09$ [10]	$2.23{\pm}0.09$
Wine Quality	$0.76{\pm}0.02$	$0.69{\pm}0.02$	$1.01{\pm}0.39$	$0.75{\pm}0.03$	0.72 ± 0.02 [10]	$0.70{\pm}0.02$
Parkinsons Tel. (1)	$7.51{\pm}0.11$	$6.66 {\pm} 0.14$	$7.89{\pm}0.88$	$2.40{\pm}0.26$	$3.60{\pm}0.18$ [100]	$1.33{\pm}0.10$
Parkinsons Tel. (2)	$9.75{\pm}0.15$	$9.14{\pm}0.17$	$10.04{\pm}0.43$	$2.60{\pm}0.38$	5.01±0.19 [100]	$1.79{\pm}0.17$
C. Cycle Power Plant	$5.51{\pm}0.09$	4.13 ± 0.09	$8.00{\pm}0.19$	$3.98{\pm}0.13$	4.06 ± 0.11 [50]	$3.76{\pm}0.15$
Bike Sharing (1)	36.45 ± 0.46	$32.67 {\pm} 0.81$	$34.93{\pm}0.97$	$18.89 {\pm} 0.36$	$14.81{\pm}0.44[100]$	$15.17{\pm}0.44$
Bike Sharing (2)	122.65 ± 2.87	113.18 ± 1.73	117.25 ± 2.01	42.06 ± 2.06	$38.69{\pm}1.24[100]$	$36.93{\pm}1.19$
Phys. Prop.	$5.19{\pm}0.03$	$4.91{\pm}1.26$	$6.49{\pm}1.15$	4.40 ± 0.04	$4.20{\pm}0.05[100]$	$4.21{\pm}0.04$

Grade Prediction

				-					
Dataset	GPA	BMF	CSID		Dataset	GPA	BMF	CSID	
CSCI-1	0.52 ± 0.02	$0.48{\pm}0.03$	$0.48{\pm}0.03$		CSCI-11	$0.68 {\pm} 0.06$	$0.66{\pm}0.04$	$0.67{\pm}0.03$	
CSCI-2	$0.56{\pm}0.02$	$0.55{\pm}0.02$	$0.55{\pm}0.03$		CSCI-12	$0.58 {\pm} 0.04$	$0.51{\pm}0.04$	$0.48{\pm}0.01$	
CSCI-3	$0.48{\pm}0.04$	$0.48{\pm}0.04$	$0.48{\pm}0.05$		CSCI-13	$0.67{\pm}0.03$	$0.55{\pm}0.05$	$0.54{\pm}0.03$,
CSCI-4	$0.53{\pm}0.03$	$0.52{\pm}0.04$	$0.51{\pm}0.03$		CSCI-14	$0.70{\pm}0.06$	$0.62{\pm}0.03$	$0.65{\pm}0.07$	
CSCI-5	$0.43{\pm}0.02$	$0.43{\pm}0.02$	$0.42{\pm}0.02$		CSCI-15	$0.56{\pm}0.03$	$0.56{\pm}0.06$	$0.57{\pm}0.03$	
CSCI-6	$0.63 {\pm} 0.03$	$0.58{\pm}0.03$	$0.57{\pm}0.03$		CSCI-16	$0.52{\pm}0.03$	$0.51{\pm}0.03$	$0.50{\pm}0.02$	
CSCI-7	$0.57{\pm}0.02$	$0.58{\pm}0.01$	$0.56{\pm}0.02$		CSCI-17	$0.60{\pm}0.02$	$0.58{\pm}0.05$	$0.59{\pm}0.05$	
CSCI-8	$0.52{\pm}0.02$	$0.49{\pm}0.03$	$0.47{\pm}0.02$		CSCI-18	$0.57{\pm}0.03$	$0.56{\pm}0.05$	$0.55{\pm}0.04$	
CCCTO	0.61 ± 0.02				COOT 10	0.0010.01	0.70 + 0.04	0.01 0.04	

UNIVERSITY OF MINNESOTA Driven to Discover umn.edu