LEARNING MIXTURES OF SMOOTH PRODUCT DISTRIBUTIONS:
IDENTIFIABILITY AND ALGORITHM M

UNIVERSITY OF MINNESOTA
Driven to Discover

umn.edu

Nikos Kargas and Nicholas D. Sidiropoulos

Introduction Identifiability using Lower-dimensional Statistics
* Learning mixture models — fundamental problem in statistics and machine * Realizations of subsets of only three random variables are sufficient to recover
learning. Pr (Xn S Af{b‘ H =r) and {w, }2 ;.
* Applications — density estimation and clustering. * A histogram of any subset of three random variables X ;, X, X, can be
written as

* A PDFis a mixture of R component distributions if it can be expressed as a X s PR Zer:1 A[FA [i5, 7] Ak ik, 7] Aglie, 7]
weighted sum of R multivariate distributions:

which is a CPD of rank R.

R
fX(xla"'axN) — Zwer|H($1;---ny|r)
r=1

N 2
 The parameters of the CPD are generically unique for R < (L3 JfJ” .

* When each conditional PDF factors into the product of its marginal densities
Remarks:

R N
fx(x1,...,2zN) = E Wy H an|H(.§Un|7~) 1. Finer discretization can lead to improved identifiability results.
r=1 n=1 Many samples to reliably estimate these histograms!

we have:

. Common assumption: parametric form of the conditional PDFs such as 2. Histograms of subsets of two variables correspond to Non-negative Matrix

Gaussian distributions. Factorization which is not identifiable in general!

* Most popular algorithm: Expectation Maximization [Dempster et al., 1977].

* |Is it possible to recover mixtures of non-parametric product distributions? Recovery of the Conditional PDEs
Canonical Polyadic Decomposition
* Proposition: A PDF that is (approximately) band-limited with cutoff frequency
It ; We can be recovered from uniform samples of the associated CDF taken 7 /w.
e An N-way tensor X € Rt X222 XN is 3 multidimensional array. A polyadic apart
decomposition expresses the tensor as a sum of rank-1 terms: Toy Example
R
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* |If the number of rank-1 terms is minimal, then the decomposition is called the o0z | /‘/\ /N / 19 @ .Qﬂfpﬂi‘fﬁnhmnﬂm
CPD of X and Riis called the rank of X. B o : 10185 |
Ijemmtrucyiun of CDF 0.08 Eemnstrucyiun of PDF ..E l
_ 1-F(S;§£ﬂ:?ed{:DF n’ﬁu_m 0 L ' g 1D'2; :E‘-L ::E---E’-‘-G ------- ?
* Without loss of generality, we can restrict the columns of {A,,}_, to have S os| FAENE X, //\ - &---ﬁ:::g-_--ﬁ _______ :
unit norm and have the following equivalent expression: D_J{_EE,E“‘? | Dﬂ: | - 1:;;.-3[; — 1::.-?:3':: ----- 1 ;?;D
R ? ’ number of samples
X = AlrJAil;,r] o Ag[,r] 0 0 A, 7]
r=1
Algorithm
* Optimization problem:
Related Work N N N
* EM-based: {Anii]{}- N L L L D (lecﬁa &Y Aj, Ay, AE]]R)

n=10" 51 k>4 0>k

st. A>01'Aa=1
A,>0 n=1,....N
17A,=1". n=1,....N

— parametric models (Gaussian, Exponential, Laplace, Poisson).

— non-parametric models [Benaglia et al., 2009, Levine et al., 2011].
* Kernel-based methods.
* Lack Identifiability.

* Tensor-based: * Alternating optimization approach:

— GMMs [Hsu and Kakade, 2013], categorical [Jain and Oh, 2014]. Cyclically update the variables while keeping all but one fixed.

* Parametric models, algebraic algorithms —> EM for refinement.
min. Z Z D (Xﬁgg, (Ag O Ak)dlag()\)A;r)

* Identifiability for non-parametric mixtures of product distributions [Allman et AjeC vy
J 1#7
al., 2009]. >k
* Identifiability of the conditional PDFs given the true joint PDF, if the solved via Exponentiated Gradient. The update rule becomes:
conditional PDFs are linearly independent. AT =AT @exp (—n, V[ (AT))
* No estimation procedure. Similarly for \.

Approach Experiments
* Discretization of each random variable by partitioning its support into uniform  Conditional PDFs: Gaussian
|nter‘vals {A%} p— (d%_]-’ d%) }]_S’LSI . . Number of components R = 10 . Number n‘:lnf4!:.1::+l:r:11:|n|::l:ual.'d:ﬂe};=1ll1-g
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* Define the probability tensor (histogram): §D1_5- \ EM GMM : o
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r=1 n=1"Y8" * Conditional PDFs: Gamma
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* |s it possible to learn the mixing weights and discretized conditional PDFs from g WO s ; o A
. .. : : : : : Rl © [PUNRLT > TECEL © '
missing/limited data? Yes! Joint factorization of histogram estimates of lower- o) - g mi 05 | =
. . Number of samples Number of samples
dimensional PDFs. ’ P

* |sit possible to recover non-parametric conditional PDFs from their discretized

counterparts? Yes, if the conditional PDFs are smooth!
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