
Related Work
• EM-based:

– parametric models (Gaussian, Exponential, Laplace, Poisson).

– non-parametric models [Benaglia et al., 2009, Levine et al., 2011].

• Kernel-based methods.

• Lack Identifiability.

• Tensor-based:

– GMMs [Hsu and Kakade, 2013], categorical [Jain and Oh, 2014]. 

• Parametric models, algebraic algorithms –> EM for refinement.

• Identifiability for non-parametric mixtures of product distributions [Allman et 

al., 2009].

• Identifiability of the conditional PDFs given the true joint PDF, if the 

conditional PDFs are linearly independent.

• No estimation procedure.
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Introduction
• Learning mixture models – fundamental problem in statistics and machine 

learning.

• Applications – density estimation and clustering. 

• A PDF is a mixture of R component distributions if it can be expressed as a 

weighted sum of R multivariate distributions:

• When each conditional PDF factors into the product of its marginal densities 

we have:

• Common assumption: parametric form of the conditional PDFs such as 

Gaussian distributions.

• Most popular algorithm: Expectation Maximization [Dempster et al., 1977].

• Is it possible to recover mixtures of non-parametric product distributions?

Canonical Polyadic Decomposition

• An N-way tensor   is a multidimensional array. A polyadic 

decomposition expresses the tensor as a sum of rank-1 terms:

• If the number of rank-1 terms is minimal, then the decomposition is called the 

CPD of      and R is called the rank of      .

• Without loss of generality, we can restrict the columns of  to have 

unit norm and have the following equivalent expression:

Approach
• Discretization of each random variable by partitioning its support into uniform 

intervals .

• Define the probability tensor (histogram):

given by

• Is it possible to learn the mixing weights and discretized conditional PDFs from 

missing/limited data? Yes! Joint factorization of histogram estimates of lower-

dimensional PDFs.

• Is it possible to recover non-parametric conditional PDFs from their discretized 

counterparts? Yes, if the conditional PDFs are smooth!

Identifiability using Lower-dimensional Statistics
• Realizations of subsets of only three random variables are sufficient to recover

• Α histogram of any subset of three random variables can be 

written as

which is a CPD of rank R.

• The parameters of the CPD are generically unique for                             . 

Remarks:

1. Finer discretization can lead to improved identifiability results.                      

Many samples to reliably estimate these histograms!

2. Histograms of subsets of two variables correspond to Non-negative Matrix 

Factorization which is not identifiable in general! 

Recovery of the Conditional PDFs

• Proposition: A PDF that is (approximately) band-limited with cutoff frequency

can be recovered from uniform samples of the associated CDF taken

apart.

Toy Example

Experiments
• Conditional PDFs: Gaussian

• Conditional PDFs: Gamma

Algorithm
• Optimization problem:

• Alternating optimization approach:
Cyclically update the variables while keeping all but one fixed.

solved via Exponentiated Gradient. The update rule becomes:

Similarly for    .


