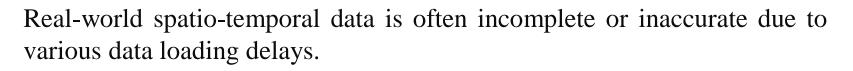
Multi-version Tensor Completion for Time-delayed Spatio-temporal Data

¹ ACOE, IQVIA; ²Dept of ECE, University of Minnesota Twin Cities; ³Dept of ECE, University of Virginia; ⁴Dept of CS, University of Illinois Urbana-Champaign

Background



Recovering such missing or noisy (under-reported) elements of the input tensor can be viewed as a generalized **tensor completion** problem.

Existing tensor completion methods usually assume that

- i) missing elements are randomly distributed
- ii) noise for each tensor element is i.i.d. zero-mean.

Both assumptions can be violated for spatio-temporal tensor data.

We often observe multiple versions of the input tensor with different under-reporting noise levels.

Problem Statement

Given a spatio-temporal tensor of *I* locations and *J* features over time, we introduce the following time concepts:

- Generation date (GD) is the time when data items are generated.
- Loading date (LD) is when the data items are received.
- At loading date *t*:
 - The observed tensor $\underline{\mathbf{Z}}_t \in \mathbb{R}^{I \times J \times S_t}$
 - The ground-truth tensor $\tilde{\mathbf{Z}}_t \in \mathbb{R}^{I \times J \times S_t}$
 - The update tensor $\mathbf{X}_t \in \mathbb{R}^{I \times J \times K \times S_t}$

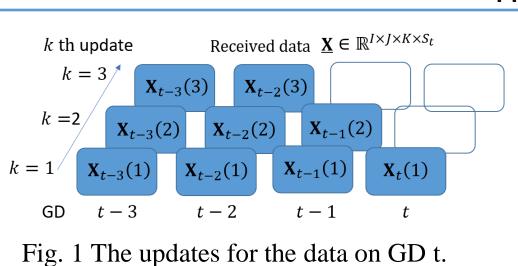
Challenges:

- 1) The latest frontal slabs of $\underline{\mathbf{Z}}_t$ are under-reported and thus very noisy.
- 2) The noise distribution is unknown in practice.
- 3) The dimension corresponding to the GDs in \mathbf{Z}_t is gradually growing as t increases and more data are introduced.

The task is to estimate \mathbf{Z}_t

Related work

- Tensor completion [Almutairi et al., 2017, Lacroix et al., 2018].
- Joint tensor tracking and imputation [Song et al., 2017].
- Nonlinear (neural network based) tensor completion [Liu et al., 2019].



1) Multi-version Tensor Completion (MTC)

In this work, we approximate $\underline{\mathbf{X}}_t$ using a lowrank CPD model

$$\underline{\mathbf{X}} = \sum_{f=1}^{F} \mathbf{A}(:, f) \circ \mathbf{B}$$

where **A**, **B**, **C** and **D** are the factor matrices for

location, feature, LD and GD, respectively. We

propose to solve $\min_{\boldsymbol{\theta},\underline{\mathbf{Y}}} \ \mathcal{F}(\boldsymbol{\theta},\underline{\mathbf{Y}}) + \mathcal{R}(\boldsymbol{\theta})$ s. t. $\boldsymbol{\theta} \geq 0, \mathcal{P}_{\Omega_s}(\mathbf{Y}(:, :))$

2) MTC-online

At *t*+1, a new update $\underline{\breve{X}}_{t+1}$ will be appended to $\mathbf{\underline{X}}_{t}$, we have

$$\operatorname{vec}(\check{\mathbf{X}}_{t+1}) pprox (\mathbf{A}_t \odot \mathbf{I})$$

We can solve a non-negative least squares problem to find the last row of \mathbf{D}_{t+1} , denoted by \mathbf{d}_{t+1} .

Datasets:

- Semi-synthetic - Covid-19, 77
- Chicago-Crim • Real Spatio-tem
- $3027 \times 22 \times 52$

Cheng Qian^{1*}, Nikos Kargas^{2*} Cao Xiao¹, Lucas Glass¹, Nicholas D. Sidiropoulos³, Jimeng Sun⁴

Approach

The key idea is to track the update tensor.

We may assume that data corresponding to a given GD is updated at most K times.

Then, transform the problem into **an equivalent** 4-way tensor completion problem.

Finally, the target tensor can be obtained by marginalization!

Proposed Methods

 $\mathbf{B}(:,f)\circ\mathbf{C}(:,f)\circ\mathbf{D}(:,f),$

$$\boldsymbol{\theta} \ge 0, \mathcal{P}_{\Omega_{\mathbf{s}}}(\underline{\mathbf{Y}}(:,:,:,s)) = \mathcal{P}_{\Omega_{\mathbf{s}}}(\underline{\mathbf{X}}(:,:,:,s)),$$

$$\forall \mathbf{s} = S - K + 2, \dots, S,$$

 $(\mathbf{B}_t \odot \mathbf{C}_t) ig(\mathbf{D}_{t+1}(S_{t+1},:) ig)^T$

where θ stands for the unknown parameters, $\mathcal{R}(\cdot)$ is the regularization, and

$$\mathcal{F}(\boldsymbol{\theta}, \underline{\mathbf{Y}}) = \alpha \mathcal{F}_1(\boldsymbol{\theta}, \underline{\mathbf{Y}}) + (1 - \alpha) \mathcal{F}_2(\boldsymbol{\theta}, \underline{\mathbf{Y}}),$$

$$\mathcal{F}_1(\boldsymbol{\theta}, \underline{\mathbf{Y}}) = \sum_{s=1}^{S-K+1} \|\underline{\mathbf{Y}}(:, :, :, s) - [[\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{d}_s]]\|_F^2,$$

$$\mathcal{F}_2(\boldsymbol{\theta}, \mathbf{Y}) = \sum_{s=1}^{S} \|\mathbf{Y}(:, :, :, s) - [[\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{d}_s]]\|$$

$$F_2(\boldsymbol{\theta}, \underline{\mathbf{Y}}) = \sum_{s=S-K+2} \|\underline{\mathbf{Y}}(:, :, :, s) - [\![\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{d}_s]\!]\|_2^2$$

We solve this optimization problem using BSUM with closed-form expression for updating each variable.

$$\hat{\mathbf{Z}} = \sum_{k=1}^{K} \hat{\mathbf{Y}}(:,:,k,:)$$

We initialize MTC using the latest estimate, i.e., $\mathbf{A}_t, \mathbf{B}_t, \mathbf{C}_t, \mathbf{D}_t, \mathbf{d}_{t+1}$

implement MTC with one iteration to update all the factor matrices.

Results z dataBaselines: $7 \times 32 \times 442 \times 10$ Naïve, i.e., \underline{Z}_t $me, 51 \times 3 \times 200 \times 8$ Structured Data Fusion (Tensorlab),mporal medical claims data,COSTCO [Liu et al., 2019] 2×12 ARIMA
• LSTM

	Pat	ient-Clai	ms	(Covid-19)	Chi	cago-Cri	ime
Method	RMSE	MAE	R^2	RMSE	MAE	R^2	RMSE	MAE	\mathbb{R}^2
MTC	220.4	29.7	0.997	74.2	26 .0	0.986	1.42	0.57	0.983
Naive	1113.5	107.2	0.896	290.1	97.1	0.559	4.98	1.24	0.594
SDF (3-way)	1149.1	146.2	0.905	291.9	105.0	0.551	4.70	1.24	0.648
SDF (4-way)	278.7	31.5	0.995	101.7	31.8	0.974	1.46	0.55	0.981
COSTCO	633.5	96.4	0.972	203.1	99.3	0.877	2.43	0.66	0.908
ARIMA	524.2	66.5	0.981	283.2	99.8	0.780	3.63	1.55	0.915
LSTM	400.6	58.5	0.989	343.9	111.8	0.736	3.65	1.41	0.876

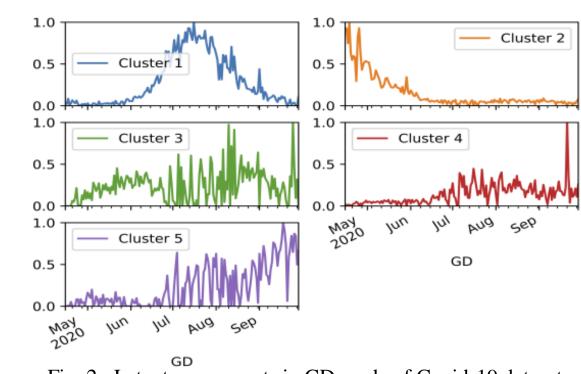


Table 2 Perform

Method	RMSE	MAE	R^2			
Patient-Claims dataset						
MTC	237.8 ± 40.3	32.5 ± 3.0	0.996 ± 0.001			
MTC-online	238.5 ± 37.5	32.2 ± 2.8	0.996 ± 0.001			
SDF (4-way)	253.4 ± 59.5	34.6 ± 4.7	0.996 ± 0.002			
Naive	$1,017.5 \pm 69.3$	99.8 ± 6.3	0.912 ± 0.012			
SDF (3-way)	$1,052.8 \pm 89.1$	131.0 ± 15.3	0.904 ± 0.015			
COSTCO	580.5 ± 37.2	87.9 ± 5.3	0.977 ± 0.003			
ARIMA	553.1 ± 31.5	74.6 ± 5.2	0.979 ± 0.002			
LSTM	692.1 ± 232.2	98.7 ± 31.8	0.952 ± 0.039			

- temporal tensor data estimation.
- capture the data updates.
- tackle this problem.

Table 1 Performance comparison in static case

Fig. 2 : Latent components in GD mode of Covid-19 dataset.

Conclusion

• This paper studies the problem of time-delayed spatio-

• We formulated the problem as a multi-version tensor

completion (MTC) problem by introducing an extra mode to

• We proposed static and online version of MTC algorithms to

• The experimental results on several real datasets have demonstrated the advantages of the proposed methods.