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The Supervised Learning Problem 
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?

Categorical (classification, binary or FA)
Real-valued (prediction, regression)
Complex-valued (channel; MRI k-space) 



AKA: I/O (Nonlinear) System Identification 
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(Deep) Neural Networks
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Most popular method for learning to mimic nonlinear functions
Some theory … but, for most part …
Don’t understand why they work so well
Choosing architecture is art

Hard to interpret

 Against all odds and principles!
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 Most popular method for learning to mimic nonlinear functions
 Some theory … but, for most part …
Don’t understand why they work so well
Choosing architecture is art
Hard to interpret

 Against all odds and principles!

 This talk: principled alternative
 Based on tensor principal components 
 Advantages: `universal', intuitive, interpretable, backed by theory
 Works with incomplete input data – important in practice



Introduction
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 General nonlinear function identification
 `Supervised’ - from input-output data
Function approximation problem
 Identifiability? Performance? Complexity?

 Applications
Machine learning
Dynamical system identification and control
Communications 

?



Motivation
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Course grade 

prediction

Drug response 
prediction



Motivation
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Channel 
estimation 

Text 
classification



Sneak preview 

9

 Deep neural networks
Work very well in practice
Hard to interpret
Difficult to tune

 In this work: 
Simple and elegant alternative
Low-rank tensor decomposition
Model any nonlinearity
 Identification guarantees



Canonical Polyadic Decomposition (CPD)

An N-way tensor (multi-way array) admits a decomposition of rank F it can be 
decomposed as a sum of F rank-1 tensors

Tensor rank is smallest F for which such decomposition exists  Canonical

Element-wise:

Matrix unfolding:

Vector: 



Prior work

Tensor modeling of low-order multivariate polynomial systems (Rendle, 2010)

A multivariate polynomial of order d is represented by a tensor of order d



Prior work

Number of parameters grows exponentially with the order d

Assume that the coefficient tensor is low-rank

 Drawbacks
Require prior knowledge of polynomial order
Assuming polynomial of a given degree can be restrictive
Simplest rank=1 model          number of parameters grows linearly with d
Cannot model high-degree polynomial functions



Canonical System Identification (CSID)
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 We propose:
Single high-order tensor for learning a general nonlinear system



Canonical System Identification (CSID)
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 Claims:

CPD can model any nonlinearity (even of      order) for high-enough rank. 
Even for low ranks, it can model highly nonlinear operators

Provably correct nonlinear system identification from limited samples, when 
the tensor is low rank

Even when not low rank        identification of the principal components!



Rank of generic nonlinear systems?
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Seperable function:
Rank: 1 

e.g., 

Sum of separable functions:
Maximal rank: N

e.g.,

Sum of pairwise functions:
Maximal rank: 

Other nonlinear systems?



Problem formulation

16

Each input vector                                 is viewed as a cell multi-index and the cell 
content is the estimated response of the system:

We aim for the principal components of the nonlinear operator:



Handling ordinal features
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Datasets often contain both categorical and ordinal predictors.

where



Tensor completion: Identifiability
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 Probabilistic results
Adaptive sampling (Krishnamurthy and Singh 2013)
Random sampling with orthogonal factors (Jain and Oh 2014)
Random sampling assuming low mode-n ranks (Huang et al. 2014) 

 Deterministic results
Fiber sampling (Sorensen and De Lathauwer 2019)
Regular sampling (Kanatsoulis et al. 2019)



Tensor completion: Identifiability
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 Depends on how the x-samples are generated – randomly or systematically, and if 
randomly from what distribution 

Practical experience: generic sample complexity for randomly drawn point samples ~ 
degrees of freedom O(FNI) in the model. Proven for randomly drawn linear
(generalized, aggregated) samples in 
 M. Bousse, N. Vervliet, I. Domanov, O. Debals, and L. De Lathauwer, “Linear systems with a canonical polyadic

decomposition constrained solution: Algorithms and applications", Numerical Linear Algebra with Applications, 
vol. 25, no. 6, Aug. 2018.

… but not (yet?) for point samples. 

For F < I, can show that for uniform random point samples, the sample complexity for 
our low-rank model is 𝑂( 𝐹𝐼𝑁 log 𝑁 ), using 
 M. Yuan C. Zhang, “On Tensor Completion via Nuclear Norm Minimization", Foundations Computational 

Mathematics, vol. 16, no. 4, Aug. 2016.



Algorithm
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 Alternating minimization
Exploit sparsity (Smith and Karypis 2015)
Cyclically update variables
Lightweight row-wise updates

Large scale problems SGD, Block-stochastic GD



Missing data
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Let    and       denote the indices of the observed and missing entries of a single 
observation

We adopt a simple rank-1 joint PMF model estimated via the empirical one-
dimensional marginal distributions (K. Huang, N. D. Sidiropoulos, 2017)



Multi-output regression
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No correlation between the K output variables        build K independent models

Output variables are usually correlated

 Better approach:
Build a single model capable of predicting all K outputs

 The new tensor model can be described by N+1 factors

No modification is needed for the ALS updates

 Prediction:



Experiments

23

Regression task using 9 UCI datasets

Grade prediction task
20 CS courses selected from University of Minnesota
20 independent models using 34 courses as predictors

10 Monte Carlo simulations

80% training, 20% test (5-fold cross-validation for parameter selection)

Evaluate the performance using RMSE



Dataset information
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Results: Full data
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Baselines: Ridge Regression (RR), Support Vector Regression (SVR), Decision 
Tree (DT), Neural network: multilayer perceptron (MLP).



Results: Missing data
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Randomly hide 30% of the data 

Mean and mode imputation for baselines



Results: Multiple outputs
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2 output variables for each dataset



Grade prediction
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Baselines: Grade Point Average (GPA), Biased Matrix Factorization



Take-home points
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Concluding remarks
Nonlinear system identification is tensor completion

 Provably correct system identification is possible under low rank conditions

 Low-rank models can model highly nonlinear functions

 Even if not low-rank: Identification of principal components of the nonlinear mapping



THANK YOU!
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Questions?
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