Nonlinear System Identification via Tensor Completion

N. Kargas and N. D. Sidiropoulos

The Supervised Learning Problem

Categorical (classification, binary or FA) Real-valued (prediction, regression) Complex-valued (channel; MRI k-space)

AKA: I/O (Nonlinear) System Identification

Categorical (classification, binary or FA) Real-valued (prediction, regression) Complex-valued (channel; MRI k-space)

(Deep) Neural Networks

Most popular method for learning to mimic nonlinear functions
Some theory ... but, for most part ...

- Don't understand why they work so well
- Choosing architecture is art
- Hard to interpret
- Against all odds and principles!

(Deep) Neural Networks

- Most popular method for learning to mimic nonlinear functions
- Some theory ... but, for most part ...
 - Don't understand why they work so well
 - Choosing architecture is art
 - Hard to interpret
- Against all odds and principles!
- This talk: principled alternative
- Based on tensor principal components
- Advantages: `universal', intuitive, interpretable, backed by theory
- Works with incomplete input data important in practice

Introduction

General nonlinear function identification

- Supervised' from input-output data
- Function approximation problem
- Identifiability? Performance? Complexity?

Applications

- Machine learning
- Dynamical system identification and control
- Communications

Motivation

Course grade prediction

de n Drug response prediction

Motivation

Text classification

Channel estimation

Sneak preview

- Deep neural networks
 - Work very well in practice
 - Hard to interpret
 - Difficult to tune

In this work:

- Simple and elegant alternative
- Low-rank tensor decomposition
- Model any nonlinearity
- Identification guarantees

Canonical Polyadic Decomposition (CPD)

An N-way tensor (multi-way array) admits a decomposition of rank F it can be decomposed as a sum of F rank-1 tensors

$$\mathcal{X} = \sum_{f=1}^{F} \mathbf{a}_{f}^{1} \circ \mathbf{a}_{f}^{2} \circ \cdots \circ \mathbf{a}_{f}^{N}$$

• Tensor rank is smallest F for which such decomposition exists \rightarrow Canonical

$$\mathcal{X} = egin{array}{c} \mathbf{a}_1^3 & \mathbf{a}_1^2 \ \mathbf{a}_1^1 & \mathbf{a}_F^1 \ \mathbf{a}_1^1 & \mathbf{a}_F^1 \end{array}$$

• Element-wise: $\mathcal{X}(i_1, \dots, i_N) = \sum_{f=1}^F \prod_{n=1}^N \mathbf{a}_f^n(i_n)$

• Matrix unfolding: $\mathcal{X}^{(n)} = (\mathbf{A}_N \odot \cdots \odot \mathbf{A}_{n+1} \odot \mathbf{A}_{n-1} \cdots \odot \cdots \mathbf{A}_1) \mathbf{A}_n^T$

• Vector:
$$\operatorname{vec}(\mathcal{X}) = (\mathbf{A}_N \odot \cdots \odot \mathbf{A}_1)\mathbf{1}$$

Prior work

Tensor modeling of low-order multivariate polynomial systems (Rendle, 2010)
A multivariate polynomial of order d is represented by a tensor of order d

Prior work

Number of parameters grows exponentially with the order d

Assume that the coefficient tensor is low-rank

Drawbacks

- Require prior knowledge of polynomial order
- Assuming polynomial of a given degree can be restrictive
- Cannot model high-degree polynomial functions

Canonical System Identification (CSID)

We propose:

Single high-order tensor for learning a general nonlinear system

Canonical System Identification (CSID)

Claims:

- CPD can model *any* nonlinearity (even of ∞ order) for high-enough rank. Even for low ranks, it can model highly nonlinear operators
- Provably correct nonlinear system identification from limited samples, when the tensor is low rank
- Even when not low rank identification of the principal components!

Rank of generic nonlinear systems?

•Seperable function: $y = f(x_1, \dots, x_N) = \prod_{n=1}^N f_n(x_n)$

Rank: 1

e.g., $f(x_1, \ldots, x_N) = \prod_{n=1}^N \operatorname{sign}(x_n)$

•Sum of separable functions: $y = f(x_1, ..., x_N) = \sum_{n=1}^N f_n(x_n)$

Maximal rank: N

e.g., $f(x_1, ..., x_N) = \sum_{n=1}^N \operatorname{sign}(x_n)$

Sum of pairwise functions: $y = f(x_1, ..., x_N) = \sum_{i=1}^N \sum_{j>i} f_{ij}(x_i, x_j)$ Maximal rank: $\frac{IN^2}{2} \ll I^{N-1}$

Other nonlinear systems?

Problem formulation

• Each input vector $[\mathbf{x}_m(1), \dots, \mathbf{x}_m(N)]$ is viewed as a cell multi-index and the cell content is the estimated response of the system:

$$\min_{\mathcal{X}} \frac{1}{M} \sum_{m=1}^{M} \left(y_m - \mathcal{X} \left(\mathbf{x}_m(1), \dots, \mathbf{x}_m(N) \right) \right)^2$$

• We aim for the principal components of the nonlinear operator:

$$\min_{\mathcal{X}, \{\mathbf{A}_n\}_{n=1}^N} \frac{1}{M} \sum_{m=1}^M \left(y_m - \mathcal{X}(\mathbf{x}_m(1), \dots, \mathbf{x}_m(N)) \right)^2 + \sum_{n=1}^N \rho \|\mathbf{A}_n\|_F^2$$

subject to $\mathcal{X} = \sum_{f=1}^F \mathbf{A}_1(:, f) \odot \cdots \odot \mathbf{A}_N(:, f)$

Handling ordinal features

Datasets often contain both categorical and ordinal predictors.

$$\min_{\mathcal{X}, \{\mathbf{A}_n\}_{n=1}^N} \frac{1}{M} \left\| \sqrt{\mathcal{W}} \circledast (\mathcal{Y} - \mathcal{X}) \right\|_F^2 + \sum_{n=1}^N \rho \|\mathbf{A}_n\|_F^2 + \sum_{n=1}^N \mu_n \|\mathbf{T}_n \mathbf{A}_n\|_F^2$$

subject to $\mathcal{X} = \sum_{f=1}^F \mathbf{A}_1(:, f) \odot \cdots \odot \mathbf{A}_N(:, f),$

where

$$\mathbf{T}_{n} = \begin{bmatrix} 1 & -1 & & \\ & 1 & -1 & \\ & & \ddots & \ddots & \\ & & & 1 & -1 \end{bmatrix} \quad \text{or} \quad \mathbf{T}_{n} = \begin{bmatrix} 1 & -2 & 1 & & \\ & 1 & -2 & 1 & \\ & & \ddots & \ddots & \ddots & \\ & & & 1 & -2 & 1 \end{bmatrix}$$

Tensor completion: Identifiability

Probabilistic results

- Adaptive sampling (Krishnamurthy and Singh 2013)
- Random sampling with orthogonal factors (Jain and Oh 2014)
- Random sampling assuming low mode-n ranks (Huang et al. 2014)

Deterministic results

- Fiber sampling (Sorensen and De Lathauwer 2019)
- Regular sampling (Kanatsoulis et al. 2019)

Tensor completion: Identifiability

- Depends on how the x-samples are generated randomly or systematically, and if randomly from what distribution
- Practical experience: generic sample complexity for randomly drawn point samples ~ degrees of freedom O(FNI) in the model. Proven for randomly drawn *linear* (generalized, aggregated) samples in
 - M. Bousse, N. Vervliet, I. Domanov, O. Debals, and L. De Lathauwer, "Linear systems with a canonical polyadic decomposition constrained solution: Algorithms and applications", *Numerical Linear Algebra with Applications*, vol. 25, no. 6, Aug. 2018.
- ... but not (yet?) for point samples.
- For F < I, can show that for uniform random point samples, the sample complexity for our low-rank model is $O(\sqrt{FI^N} \log(N))$, using
 - M. Yuan C. Zhang, "On Tensor Completion via Nuclear Norm Minimization", Foundations Computational Mathematics, vol. 16, no. 4, Aug. 2016.

Algorithm

Alternating minimization

- Exploit sparsity (Smith and Karypis 2015)
- Cyclically update variables
- Lightweight row-wise updates

$$\min_{\mathcal{X}, \{\mathbf{A}_n\}_{n=1}^N} \frac{1}{M} \left\| \sqrt{\mathcal{W}} \circledast (\mathcal{Y} - \mathcal{X}) \right\|_F^2 + \sum_{n=1}^N \rho \|\mathbf{A}_n\|_F^2 + \sum_{n=1}^N \mu_n \|\mathbf{T}_n \mathbf{A}_n\|_F^2$$

subject to $\mathcal{X} = \sum_{f=1}^F \mathbf{A}_1(:, f) \odot \cdots \odot \mathbf{A}_N(:, f),$

Missing data

 \blacksquare Let ${\cal O}$ and ${\cal M}$ denote the indices of the observed and missing entries of a single observation

$$f(\mathbf{x}_{\mathcal{O}}) = \mathbb{E}_{\mathbf{x}_{\mathcal{M}} | \mathbf{x}_{\mathcal{O}}} [f(\mathbf{x}_{\mathcal{O}}, \mathbf{x}_{\mathcal{M}})] = \sum_{\mathbf{x}_{\mathcal{M}}} P_{X_{\mathcal{M}} | X_{\mathcal{O}}} (\mathbf{x}_{\mathcal{M}} | \mathbf{x}_{\mathcal{O}}) f(\mathbf{x}_{\mathcal{O}}, \mathbf{x}_{\mathcal{M}})$$

We adopt a simple rank-1 joint PMF model estimated via the empirical onedimensional marginal distributions (K. Huang, N. D. Sidiropoulos, 2017)

$$f(\mathbf{x}_{\mathcal{O}}) = \mathbb{E}_{\mathbf{x}_{\mathcal{M}} | \mathbf{x}_{\mathcal{O}}} [f(\mathbf{x}_{\mathcal{O}}, \mathbf{x}_{\mathcal{M}})] = \mathcal{X}(i_1, \dots, i_T, :, \dots, :) \times_{T+1} \mathbf{p}_{T+1} \cdots \times_{T+L} \mathbf{p}_N$$
$$= \sum_{f=1}^F \prod_{n=1}^T \mathbf{A}_n(i_n, f) \prod_{n=T+1}^N \mathbf{p}_n^T \mathbf{A}_n(:, f)$$

Multi-output regression

No correlation between the K output variables build K independent models

Output variables are usually correlated

Better approach:

Build a single model capable of predicting all K outputs $\mathcal{X} = \llbracket \mathbf{A}_1, \ldots, \mathbf{A}_N, \mathbf{V}
rbracket_F$

- The new tensor model can be described by N+1 factors
- No modification is needed for the ALS updates
- Prediction: $\mathcal{X}(i_1, \ldots, i_N, :) = (\mathbf{A}_1(i_1, :) \circledast \cdots \circledast \mathbf{A}_N(i_N, :)) \mathbf{V}^T$

Experiments

- Regression task using 9 UCI datasets
- Grade prediction task
 - 20 CS courses selected from University of Minnesota
 - 20 independent models using 34 courses as predictors

10 Monte Carlo simulations

- 80% training, 20% test (5-fold cross-validation for parameter selection)
- Evaluate the performance using RMSE

Dataset information

Dataset	N	M	Type	Range
Concrete Compressive Strength	8	1030	Ordinal	$y \in (2,83)$
SkillCraft Master Table	18	3337	Ordinal	$y \in (1,7)$
Abalone	8	4177	Mixed	$y \in (1, 29)$
Wine Quality	11	4898	Ordinal	$y \in (3,9)$
Combined Cycle Power Plant		9568	Ordinal	$y \in (420, 496)$
Physicochemical Properties	9	45730	Ordinal	$y \in (0, 21)$
Energy efficiency (2)	8	788	Ordinal	$y_1 \in (6, 44) \ y_2 \in (10, 49)$
Parkinsons Telemonitoring (2)	19	5875	Mixed	$y_1 \in (5, 40) \ y_2 \in (7, 55)$
Bike Sharing (2)	12	17379	Mixed	$y_1 \in (0, 367) \ y_2 \in (0, 886)$

Dataset	N	M	Sparsity]	Dataset	N	M	Sparsity
CSCI-1	34	996	0.54		CSCI-11	34	704	0.57
CSCI-2	34	990	0.55		CSCI-12	34	696	0.58
CSCI-3	34	983	0.55		CSCI-13	34	650	0.57
CSCI-4	34	958	0.55		CSCI-14	34	636	0.59
CSCI-5	34	953	0.56		CSCI-15	34	600	0.57
CSCI-6	34	931	0.56		CSCI-16	34	598	0.57
CSCI-7	34	911	0.56		CSCI-17	34	529	0.56
CSCI-8	34	898	0.56		CSCI-18	34	519	0.55
CSCI-9	34	867	0.56		CSCI-19	34	431	0.55
CSCI-10	34	856	0.57		CSCI-20	34	403	0.55

Results: Full data

 Baselines: Ridge Regression (RR), Support Vector Regression (SVR), Decision Tree (DT), Neural network: multilayer perceptron (MLP).

Dataset	RR	SVR (RBF)	SVR (polynomial)	DT	MLP (5 Layer)	CSID
Energy Eff. (1)	$2.91{\pm}0.17$	$2.68{\pm}0.17$	$4.09{\pm}0.49$	$0.56{\pm}0.03$	$0.48{\pm}0.06~[50]$	$0.39{\pm}0.05$
Energy Eff. (2)	$3.09{\pm}0.19$	$3.03{\pm}0.21$	$4.14{\pm}0.44$	$1.86{\pm}0.19$	$0.97{\pm}0.14~[50]$	$0.57{\pm}0.09$
C. Comp. Strength	10.47 ± 0.42	$9.72{\pm}0.38$	$11.30{\pm}0.36$	$6.57{\pm}0.82$	$4.92{\pm}0.63~[50]$	$4.67{\pm}0.50$
SkillCraft Master Table	$1.68{\pm}1.61$	$0.99{\pm}0.03$	$1.22{\pm}0.05$	1.03 ± 0.04	$1.00{\pm}0.03$ [10]	$0.91{\pm}0.02$
Abalone	$2.25{\pm}0.10$	$2.19{\pm}0.08$	$3.90{\pm}3.43$	$2.35{\pm}0.08$	$2.09{\pm}0.09[10]$	$2.23{\pm}0.09$
Wine Quality	$0.76{\pm}0.02$	$0.69{\pm}0.02$	$1.01{\pm}0.39$	$0.75{\pm}0.03$	0.72 ± 0.02 [10]	$0.70{\pm}0.02$
Parkinsons Tel. (1)	$7.51{\pm}0.11$	6.66 ± 0.14	$7.89{\pm}0.88$	$2.40{\pm}0.26$	$3.60{\pm}0.18$ [100]	$1.33{\pm}0.10$
Parkinsons Tel. (2)	$9.75{\pm}0.15$	$9.14{\pm}0.17$	$10.04{\pm}0.43$	$2.60{\pm}0.38$	5.01±0.19 [100]	$1.79{\pm}0.17$
C. Cycle Power Plant	$5.51{\pm}0.09$	4.13 ± 0.09	$8.00{\pm}0.19$	$3.98{\pm}0.13$	4.06 ± 0.11 [50]	$3.76{\pm}0.15$
Bike Sharing (1)	36.45 ± 0.46	32.67 ± 0.81	$34.93{\pm}0.97$	18.89 ± 0.36	$14.81{\pm}0.44[100]$	$15.17{\pm}0.44$
Bike Sharing (2)	122.65 ± 2.87	113.18 ± 1.73	$117.25{\pm}2.01$	42.06 ± 2.06	$38.69{\pm}1.24\;[100]$	$36.93{\pm}1.19$
Phys. Prop.	$5.19{\pm}0.03$	$4.91{\pm}1.26$	$6.49{\pm}1.15$	4.40 ± 0.04	$4.20{\pm}0.05[100]$	$4.21{\pm}0.04$

Results: Missing data

Randomly hide 30% of the data

Mean and mode imputation for baselines

Dataset	RR	SVR (RBF)	SVR (polynomial)	DT	MLP (5 Layer)	CSID
Energy Eff. (1)	$3.01{\pm}0.15$	$3.38 {\pm} 0.27$	$6.88 {\pm} 0.63$	$2.57{\pm}0.49$	$2.49{\pm}0.48[10]$	$2.17{\pm}0.25$
Energy Eff. (2)	$3.26{\pm}0.16$	$3.57{\pm}0.30$	$6.65 {\pm} 0.48$	$2.64{\pm}0.28$	3.02 ± 0.36 [10]	$2.48{\pm}0.22$
C. Comp. Strength	10.33 ± 0.61	$11.39{\pm}0.48$	$13.16{\pm}1.17$	$9.90{\pm}1.05$	10.01 ± 0.54 [10]	$9.69{\pm}0.79$
SkillCraft Master Table	$1.79{\pm}1.63$	$1.05{\pm}0.03$	$1.61{\pm}0.33$	$1.08{\pm}0.03$	$1.10{\pm}0.04$ [10]	$1.05{\pm}0.01$
Abalone	$2.27{\pm}0.07$	$2.31{\pm}0.08$	$3.12{\pm}0.79$	$2.42{\pm}0.07$	$2.28{\pm}0.07~[10]$	$2.40{\pm}0.13$
Wine Quality	$0.76{\pm}0.02$	$0.73{\pm}0.02$	$0.93{\pm}0.21$	$0.78{\pm}0.02$	$0.76{\pm}0.03~[10]$	$0.78 {\pm} 0.02$
Parkinsons Tel. (1)	$7.52{\pm}0.11$	$6.91{\pm}0.13$	$8.12{\pm}0.11$	$3.10{\pm}0.22$	$5.90{\pm}0.28$ [10]	$4.98{\pm}0.12$
Parkinsons Tel. (2)	$9.76{\pm}0.18$	$9.38{\pm}0.21$	$10.68 {\pm} 0.23$	$3.59{\pm}0.81$	7.67 ± 0.18 [10]	$6.58{\pm}0.18$
C. Cycle Power Plant	$5.51{\pm}0.09$	$6.16{\pm}0.15$	$10.45 {\pm} 0.31$	$5.29{\pm}0.36$	$5.33{\pm}0.07$ [50]	$5.04{\pm}0.12$
Bike Sharing (1)	37.40 ± 0.52	$35.50{\pm}0.31$	$36.85 {\pm} 0.38$	$25.41{\pm}1.5$	${\color{red}{21.51 \pm 0.83 \pm [50]}}$	$\textbf{23.89}{\pm}\textbf{0.19}$
Bike Sharing (2)	123.81 ± 1.26	$127.06{\pm}1.55$	$130.20{\pm}1.13$	$71.93{\pm}1.18$	$64.03{\pm}1.66~[50]$	75.65 ± 1.51
Phys. Prop.	5.18 ± 0.02	$7.53{\pm}0.67$	$7.87{\pm}0.83$	$5.08 {\pm} 0.03$	$4.99{\pm}0.09[100]$	$4.70{\pm}0.03$

Results: Multiple outputs

2 output variables for each dataset

Dataset	RR	MLP (1 Layer)	MLP (3 Layer)	MLP (5 Layer)	DT	CSID
En. Eff. (2)	$2.70{\pm}0.19$	$2.82{\pm}0.08$ [50]	$2.73{\pm}0.11[100]$	$2.67{\pm}0.11[10]$	$2.19{\pm}0.19$	$2.01{\pm}0.14$
Park. Tel. (2)	$12.19{\pm}0.09$	$7.59 \pm 0.21[250]$	$6.54{\pm}0.06[250]$	$6.18 \pm 0.42[250]$	$3.37{\pm}0.39$	$2.85{\pm}0.22$
B. Shar. (2)	127.75 ± 3.32	$64.12 \pm 6.49[250]$	$43.60 \pm 1.95[100]$	$42.25{\pm}1.22[100]$	$46.21{\pm}1.20$	$45.29{\pm}1.47$

Grade prediction

Baselines: Grade Point Average (GPA), Biased Matrix Factorization

Dataset	GPA	BMF	CSID]	Dataset	GPA	BMF	CSID]
CSCI-1	$0.52{\pm}0.02$	$0.48{\pm}0.03$	$0.48{\pm}0.03$		CSCI-11	$0.68 {\pm} 0.06$	$0.66{\pm}0.04$	$0.67{\pm}0.03$	
CSCI-2	$0.56{\pm}0.02$	$0.55{\pm}0.02$	$0.55{\pm}0.03$		CSCI-12	$0.58 {\pm} 0.04$	$0.51{\pm}0.04$	$0.48{\pm}0.01$	
CSCI-3	$0.48{\pm}0.04$	$0.48{\pm}0.04$	$0.48{\pm}0.05$		CSCI-13	$0.67{\pm}0.03$	$0.55{\pm}0.05$	$0.54{\pm}0.03$	
CSCI-4	$0.53{\pm}0.03$	$0.52{\pm}0.04$	$0.51{\pm}0.03$		CSCI-14	$0.70{\pm}0.06$	$0.62{\pm}0.03$	$0.65 {\pm} 0.07$	
CSCI-5	$0.43{\pm}0.02$	$0.43{\pm}0.02$	$0.42{\pm}0.02$		CSCI-15	$0.56 {\pm} 0.03$	$0.56{\pm}0.06$	$0.57{\pm}0.03$	
CSCI-6	$0.63{\pm}0.03$	$0.58{\pm}0.03$	$0.57{\pm}0.03$		CSCI-16	$0.52{\pm}0.03$	$0.51{\pm}0.03$	$0.50{\pm}0.02$	
CSCI-7	$0.57{\pm}0.02$	$0.58{\pm}0.01$	$0.56{\pm}0.02$		CSCI-17	0.60 ± 0.02	$0.58{\pm}0.05$	$0.59{\pm}0.05$	
CSCI-8	$0.52{\pm}0.02$	$0.49{\pm}0.03$	$0.47{\pm}0.02$		CSCI-18	$0.57{\pm}0.03$	$0.56{\pm}0.05$	$0.55{\pm}0.04$	
CSCI-9	$0.61{\pm}0.03$	$0.60{\pm}0.05$	$0.57{\pm}0.03$		CSCI-19	0.68 ± 0.04	$0.70{\pm}0.04$	$0.61{\pm}0.04$	
CSCI-10	$0.58{\pm}0.04$	$0.56{\pm}0.04$	$0.56{\pm}0.04$		CSCI-20	$0.61{\pm}0.06$	$0.58{\pm}0.02$	$0.63 {\pm} 0.04$	

Take-home points

Concluding remarks

- Nonlinear system identification is tensor completion
- Provably correct system identification is possible under low rank conditions
- Low-rank models can model highly nonlinear functions
- Even if not low-rank: Identification of principal components of the nonlinear mapping

THANK YOU!

Questions?

References

- Kargas, N., and Sidiropoulos, N. D. "Nonlinear System Identification via Tensor Completion" (submitted) see <u>https://arxiv.org/pdf/1906.05746.pdf</u>
- Rendle, S. 2010. "Factorization machines". In IEEE International Conference on Data Mining, 995–1000.
- Huang, K., and Sidiropoulos, N. D. 2017. "Kullback-Leibler principal component for tensors is not NP-hard". In Asilomar Conference on Signals, Systems, and Computers, 693–697.
- Krishnamurthy, A., and Singh, A. 2013. "Low-rank matrix and tensor completion via adaptive sampling". In Advances in Neural Information Processing Systems, 836–844.
- Jain, P., and Oh, S. 2014. "Provable tensor factorization with missing data". In Advances in Neural Information Processing Systems 27, 1431–1439.
- Huang, B., Mu, C., Goldfarb, D., and Wright, J. 2014. "Provable low-rank tensor recovery".
- Sorensen, M., and De Lathauwer, L. 2019. "Fiber sampling approach to canonical polyadic decomposition and application to tensor completion". SIAM Journal on Matrix Analysis and Applications 40(3):888–917.
- Kanatsoulis, C. I., Fu, X.; Sidiropoulos, N. D., and Akcakaya, M.2019. "Tensor completion from regular sub-Nyquist samples". arXiv preprint arXiv:1903.00435. (to appear, IEEE Trans. on Signal Processing)