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The Supervised Learning Problem 
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?

Categorical (classification, binary or FA)
Real-valued (prediction, regression)
Complex-valued (channel; MRI k-space) 



AKA: I/O (Nonlinear) System Identification 
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(Deep) Neural Networks
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Most popular method for learning to mimic nonlinear functions
Some theory … but, for most part …
Don’t understand why they work so well
Choosing architecture is art

Hard to interpret

 Against all odds and principles!
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 This talk: principled alternative
 Based on tensor principal components 
 Advantages: `universal', intuitive, interpretable, backed by theory
 Works with incomplete input data – important in practice



Introduction
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 General nonlinear function identification
 `Supervised’ - from input-output data
Function approximation problem
 Identifiability? Performance? Complexity?

 Applications
Machine learning
Dynamical system identification and control
Communications 

?



Motivation
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Motivation
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Sneak preview 
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 Deep neural networks
Work very well in practice
Hard to interpret
Difficult to tune

 In this work: 
Simple and elegant alternative
Low-rank tensor decomposition
Model any nonlinearity
 Identification guarantees



Canonical Polyadic Decomposition (CPD)

An N-way tensor (multi-way array) admits a decomposition of rank F it can be 
decomposed as a sum of F rank-1 tensors

Tensor rank is smallest F for which such decomposition exists  Canonical

Element-wise:

Matrix unfolding:

Vector: 



Prior work

Tensor modeling of low-order multivariate polynomial systems (Rendle, 2010)

A multivariate polynomial of order d is represented by a tensor of order d



Prior work

Number of parameters grows exponentially with the order d

Assume that the coefficient tensor is low-rank

 Drawbacks
Require prior knowledge of polynomial order
Assuming polynomial of a given degree can be restrictive
Simplest rank=1 model          number of parameters grows linearly with d
Cannot model high-degree polynomial functions



Canonical System Identification (CSID)
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 We propose:
Single high-order tensor for learning a general nonlinear system



Canonical System Identification (CSID)
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 Claims:

CPD can model any nonlinearity (even of      order) for high-enough rank. 
Even for low ranks, it can model highly nonlinear operators

Provably correct nonlinear system identification from limited samples, when 
the tensor is low rank

Even when not low rank        identification of the principal components!



Rank of generic nonlinear systems?
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Seperable function:
Rank: 1 

e.g., 

Sum of separable functions:
Maximal rank: N

e.g.,

Sum of pairwise functions:
Maximal rank: 

Other nonlinear systems?



Problem formulation
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Each input vector                                 is viewed as a cell multi-index and the cell 
content is the estimated response of the system:

We aim for the principal components of the nonlinear operator:



Handling ordinal features
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Datasets often contain both categorical and ordinal predictors.

where



Tensor completion: Identifiability
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 Probabilistic results
Adaptive sampling (Krishnamurthy and Singh 2013)
Random sampling with orthogonal factors (Jain and Oh 2014)
Random sampling assuming low mode-n ranks (Huang et al. 2014) 

 Deterministic results
Fiber sampling (Sorensen and De Lathauwer 2019)
Regular sampling (Kanatsoulis et al. 2019)



Tensor completion: Identifiability
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 Depends on how the x-samples are generated – randomly or systematically, and if 
randomly from what distribution 

Practical experience: generic sample complexity for randomly drawn point samples ~ 
degrees of freedom O(FNI) in the model. Proven for randomly drawn linear
(generalized, aggregated) samples in 
 M. Bousse, N. Vervliet, I. Domanov, O. Debals, and L. De Lathauwer, “Linear systems with a canonical polyadic

decomposition constrained solution: Algorithms and applications", Numerical Linear Algebra with Applications, 
vol. 25, no. 6, Aug. 2018.

… but not (yet?) for point samples. 

For F < I, can show that for uniform random point samples, the sample complexity for 
our low-rank model is 𝑂( 𝐹𝐼𝑁 log 𝑁 ), using 
 M. Yuan C. Zhang, “On Tensor Completion via Nuclear Norm Minimization", Foundations Computational 

Mathematics, vol. 16, no. 4, Aug. 2016.



Algorithm
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 Alternating minimization
Exploit sparsity (Smith and Karypis 2015)
Cyclically update variables
Lightweight row-wise updates

Large scale problems SGD, Block-stochastic GD



Missing data
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Let    and       denote the indices of the observed and missing entries of a single 
observation

We adopt a simple rank-1 joint PMF model estimated via the empirical one-
dimensional marginal distributions (K. Huang, N. D. Sidiropoulos, 2017)



Multi-output regression
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No correlation between the K output variables        build K independent models

Output variables are usually correlated

 Better approach:
Build a single model capable of predicting all K outputs

 The new tensor model can be described by N+1 factors

No modification is needed for the ALS updates

 Prediction:



Experiments
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Regression task using 9 UCI datasets

Grade prediction task
20 CS courses selected from University of Minnesota
20 independent models using 34 courses as predictors

10 Monte Carlo simulations

80% training, 20% test (5-fold cross-validation for parameter selection)

Evaluate the performance using RMSE



Dataset information
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Results: Full data
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Baselines: Ridge Regression (RR), Support Vector Regression (SVR), Decision 
Tree (DT), Neural network: multilayer perceptron (MLP).



Results: Missing data
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Randomly hide 30% of the data 

Mean and mode imputation for baselines



Results: Multiple outputs
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2 output variables for each dataset



Grade prediction
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Baselines: Grade Point Average (GPA), Biased Matrix Factorization



Take-home points
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Concluding remarks
Nonlinear system identification is tensor completion

 Provably correct system identification is possible under low rank conditions

 Low-rank models can model highly nonlinear functions

 Even if not low-rank: Identification of principal components of the nonlinear mapping



THANK YOU!
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Questions?
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