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The Supervised Learning Problem
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(Deep) Neural Networks

"Most popular method for learning to mimic nonlinear functions
sSome theory ... but, for most part ...

= Against all odds and principles!



| (Deep) Neural Networks

" Most popular method for learning to mimic nonlinear functions
= Some theory ... but, for most part ...

= Against all odds and principles!

" This talk: principled alternative
= Based on tensor principal components
= Advantages: universal', intuitive, interpretable, backed by theory
= Works with incomplete input data — important in practice




Introduction

* General nonlinear function identification

= ‘Supervised’ - from input-output data
= Function approximation problem
= |dentifiability? Performance? Complexity?

= Applications
= Machine learning
= Dynamical system identification and control
= Communications
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Sneak preview

" Deep neural networks
= Work very well in practice
= Hard to interpret
= Difficult to tune

" |n this work:
=Simple and elegant alternative
" Low-rank tensor decomposition
= Model any nonlinearity
= |dentification guarantees




Canonical Polyadic Decomposition (CPD)

= An N-way tensor (multi-way array) admits a decomposition of rank F it can be
decomposed as a sum of F rank-1 tensors
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Prior work

" Tensor modeling of low-order multivariate polynomial systems (Rendle, 2010)
= A multivariate polynomial of order d is represented by a tensor of order d
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Prior work

*Number of parameters grows exponentially with the order d
==) Assume that the coefficient tensor is low-rank

® Drawbacks
= Require prior knowledge of polynomial order
= Assuming polynomial of a given degree can be restrictive
= Simplest rank=1 model =2 number of parameters grows linearly with d
= Cannot model high-degree polynomial functions




Canonical System Identification (CSID)

= We propose:
=Single high-order tensor for learning a general nonlinear system

complete data generalization
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Canonical System |dentification (CSID)

=" Claims:

ﬁCPD can model any nonlinearity (even of co order) for high-enough rankx
Even for low ranks, it can model highly nonlinear operators

= Provably correct nonlinear system identification from limited samples, when
the tensor is low rank

tEven when not low rank == identification of the principal components! /
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Rank of generic nonlinear systems?

=Seperable function: y = f(z1,...,2n5) =[] fn(2n)
"Rank: 1
e.g., f(xy,..., TN) = Hle sign(z,,)
=Sum of separable functions: y = f(z1,...,2nx) = 3.0, fulzn)
= Maximal rank: N
e.g., f(xy,..., rN) = Zle sign(z,, )
=Sum of pairwise functions: y= f(z1,...,zx) = Y0, D isi fij(wiy @)
= Maximal rank: 4= « V-1

=Other nonlinear systems?
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Problem formulation

= Each input vector [x(1),...,xn (V)] is viewed as a cell multi-index and the cell

content is the estimated response of the system:
M
.1 2

m=1

*We aim for the principal components of the nonlinear operator:

M N
S 2 2
o min o mZ:l (Y — X (X (1), -+, % (N)))? + ;pHAnHF

I
subject to X = ZAl(:,f) ©--OAN(, f)
f=1
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Handling ordinal features

= Datasets often contain both categorical and ordinal predictors.

N N
: 1 2 2 2
e lin S [vwe - + 32 pllAulfp 3 T

F
subject to X = ZAl(:,f) ©-- AN, ),
f=1

where




Tensor completion: ldentifiability

= Probabilistic results
= Adaptive sampling (Krishnamurthy and Singh 2013)
* Random sampling with orthogonal factors (Jain and Oh 2014)
* Random sampling assuming low mode-n ranks (Huang et al. 2014)

= Deterministic results
" Fiber sampling (Sorensen and De Lathauwer 2019)
= Regular sampling (Kanatsoulis et al. 2019)
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Tensor completion: ldentifiability

" Depends on how the x-samples are generated — randomly or systematically, and if
randomly from what distribution

" Practical experience: generic sample complexity for randomly drawn point samples ~
degrees of freedom O(FNI) in the model. Proven for randomly drawn linear
(generalized, aggregated) samples in

= M. Bousse, N. Vervliet, I. Domanoyv, O. Debals, and L. De Lathauwer, “Linear systems with a canonical polyadic

decomposition constrained solution: Algorithms and applications", Numerical Linear Algebra with Applications,
vol. 25, no. 6, Aug. 2018.

" ... but not (yet?) for point samples.

" For F </, can show that for uniform random point samples, the sample complexity for
our low-rank model is O(VFIN log(N)), using

= M. Yuan C. Zhang, “On Tensor Completion via Nuclear Norm Minimization”, Foundations Computational
Mathematics, vol. 16, no. 4, Aug. 2016.
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Algorithm

= Alternating minimization
= Exploit sparsity (Smith and Karypis 2015)
= Cyclically update variables
= Lightweight row-wise updates

min

N N
1 2
— 4% — X H A, 2 AT, A, 2
X (AL, M [VWe =) F+n;p” ”F“LT;“ | I

F
subject to X = ZAl(:,f) ©-OAN(, ),
f=1

" Large scale problems == SGD, Block-stochastic GD
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Missing data

"Leto and M denote the indices of the observed and missing entries of a single
observation

f(%0) = Bapjxo [f (X0, %00)] = Y Px i 1x0 (xm%0) f (X0, X 1)

XM

" We adopt a simple rank-1 joint PMF model estimated via the empirical one-
dimensional marginal distributions (K. Huang, N. D. Sidiropoulos, 2017)

f(XO) — EXJ\/{|X(D [f(XO?XM)] — X(iln' .. viTa:a- SR :) XT4+1 PT+1 " XT+L PN

=> JT A ) T] pEALGS)

f=1n=1 n=T+1



Multi-output regression

" No correlation between the K output variables == build K independent models
= Qutput variables are usually correlated

= Better approach:
= Build a single model capable of predicting all K outputs X = [A+,...,An, V]Fr
=" The new tensor model can be described by N+1 factors
= No modification is needed for the ALS updates
= Prediction: X (iy,...,in,:) = (A1(i1,:) ®--- ® An(in,:)) VT
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Experiments

" Regression task using 9 UCI datasets

" Grade prediction task
= 20 CS courses selected from University of Minnesota
=20 independent models using 34 courses as predictors

=10 Monte Carlo simulations
="80% training, 20% test (5-fold cross-validation for parameter selection)
" Evaluate the performance using RMSE



Dataset information

Dataset N M Type | Range
Concrete Compressive Strength | 8 | 1030 | Ordinal | y € (2,83)
SkillCraft Master Table 18 | 3337 | Ordinal | y € (1,7)
Abalone 8 | 4177 | Mixed | y € (1,29)
Wine Quality 11 | 4898 | Ordinal | y € (3,9)
Combined Cycle Power Plant | 4 | 9568 | Ordinal | y € (420, 496)
Physicochemical Properties 9 | 45730 | Ordinal | y € (0,21)
Energy efficiency (2) 8 788 | Ordinal | y; € (6,44) y2 € (10,49)
Parkinsons Telemonitoring (2) | 19 | 5875 | Mixed | y; € (5,40) yo € (7,55)
Bike Sharing (2) 12 | 17379 | Mixed | y1 € (0,367) y2 € (0, 886)
Dataset | N | M | Sparsity \ Dataset | N | M | Sparsity
CSCI-1 | 34 | 996 0.54 CSCI-11 | 34 | 704 0.57
CSCI-2 | 34 | 990 0.55 CSCI-12 | 34 | 696 0.58
CSCI-3 | 34 | 983 0.55 CSCI-13 | 34 | 650 0.57
CSCI-4 | 34 | 958 0.55 CSCI-14 | 34 | 636 0.59
CSCI-5 | 34 | 953 0.56 CSCI-15 | 34 | 600 0.57
CSCI-6 | 34 | 931 0.56 CSCI-16 | 34 | 598 0.57
CSCI-7 | 34 | 911 0.56 CSCI-17 | 34 | 529 0.56
CSCI-8 | 34 | 898 0.56 CSCI-18 | 34 | 519 0.55
CSCI-9 | 34 | 867 0.56 CSCI-19 | 34 | 431 0.55
CSCI-10 | 34 | 856 0.57 CSCI-20 | 34 | 403 0.55




Results: Full data

" Baselines: Ridge Regression (RR), Support Vector Regression (SVR), Decision
Tree (DT), Neural network: multilayer perceptron (MLP).

Dataset RR SVR (RBF) | SVR (polynomial) DT MLP (5 Layer) CSID
Energy Ef. (1) 2.01=0.17 | 2.68%0.17 £.09=0.49 0.56=0.03 || 0.480.06 [50] | 0.390.05
Energy Eff. (2) 3.09=+0.19 3.03=0.21 4.14+0.44 1.86+0.19 0.97+£0.14 (50 0.57+0.09

C. Comp. Strength 10.47+0.42 9.72+0.38 11.30+0.36 6.57+0.82 4.92+0.63 [50] 4.67+0.50
SkillCraft Master Table | 1.68+1.61 0.99+0.03 1.22+0.05 1.03£0.04 1.00+0.03 [10] 0.91+0.02

Abalone 2.25+0.10 2.19+0.08 3.90+3.43 2.35+0.08 2.09+0.09 [10] 2.23+0.09

Wine Quality 0.76+0.02 0.69+0.02 1.01+0.39 0.75+0.03 0.72+0.02 [10] 0.70+0.02
Parkinsons Tel. (1) 7.51+0.11 6.66+0.14 7.89+0.88 2.40+0.26 || 3.60+0.18 [100] 1.33+0.10
Parkinsons Tel. (2) 9.75+0.15 9.14+0.17 10.04+0.43 2.60+0.38 5.01+0.19 [100 1.79+0.17

C. Cycle Power Plant 5.51+0.09 4.13+0.09 8.00+0.19 3.98+0.13 4.06+0.11 [50] 3.76+0.15
Bike Sharing (1) 36.45+0.46 | 32.67+0.81 34.930.97 18.8920.36 | 14.81=0.44 [100] | 15.170.44
Bike Sharing (2) 122.65+£2.87 | 113.18+1.73 117.25+2.01 42.06+2.06 | 38.69+1.24 [100] | 36.93+1.19
Phys. Prop. 5.19+0.03 4.91+1.26 6.49+1.15 4.40+0.04 4.20+0.05 [100] 4.21+0.04
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Results: Missing data

= Randomly hide 30% of the data
" Mean and mode imputation for baselines

Dataset RR SVR (RBF) | SVR (polynomial) DT | MLP (5 Layer) CSID
Energy Eff. (1) 3.01£0.15 | 3.38+0.27 6.88+0.63 2.57+0.49 2.49+0.48 [10] | 2.17+0.25
Energy Eff. (2) 3.26£0.16 | 3.57+0.30 6.65+0.48 2.64+0.28 3.02+0.36 [10 2.4840.22

C. Comp. Strength 10.33+0.61 | 11.39+0.48 13.16+1.17 9.90+1.05 | 10.01+0.54 [10] | 9.69+0.79
SkillCraft Master Table | 1.79+1.63 | 1.05+0.03 1.61+0.33 1.08+0.03 1.10+0.04 [10] 1.05+0.01

Abalone 2.27+0.07 | 2.31:0.08 3.12+0.79 2.42+0.07 2.28+0.07 [10] 2.40+0.13

Wine Quality 0.76+0.02 | 0.73+0.02 0.93+0.21 0.78+0.02 0.76+0.03 [10] 0.78+0.02
Parkinsons Tel. (1) 7.52+0.11 6.91+0.13 8.12+0.11 3.10+0.22 [ 5.90+0.28 T10] 4.98+0.12
Parkinsons Tel. (2) 9.76+0.18 | 9.38+0.21 10.68+0.23 3.59+0.81 7.67+0.18 [10 6.5840.18

C. Cycle Power Plant | 5.51+0.09 | 6.16+0.15 10.45+0.31 5.29+0.36 5.33+0.07 [50] 5.04+0.12

Bike Sharing (1) 37.40+0.52 | 35.50+0.31 36.85+0.38 25.41+1.5 | 21.51+0.83+ [50] | 23.89+0.19
Bike Sharing (2) 123.81+1.26 | 127.06+1.55 130.20+1.13 71.93+1.18 [ 64.03£1.66 |50] | (5.60+1.51 |

Phys. Prop. 5.18+0.02 7.53+0.67 7.87+0.83 5.08£0.03 | 4.99+0.09 [100] | 4.70+0.03
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Results: Multiple outputs

= 2 output variables for each dataset

Dataset RR MLP (1 Layer) | MLP (3 Layer) | MLP (5 Layer) DT CSID
En. Eff. (2) 2.70+0.19 2.82+0.08 [50] | 2.73+0.11[100] 2.67+0.11[10] 2.19+0.19 | 2.01+0.14
Park. Tol. (2) | 12.10+0.09 | 7.59+0.21[250] | 6.54+0.06[250] | 6.18+0.42[250] | 3.37+0.39 | 2.85+0.22
B. Shar. (2) | 127.75+3.32 | 64.12+6.49[250] | 43.60+1.95[100] | 42.25+1.22[100] | 46.21+1.20 | 45.29+1.47
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Grade prediction

: Grade Point Average (GPA), Biased Matrix Factorization

= Baselines

Dataset GPA BMF CSID

CSCI-1 | 0.52+0.02 | 0.48+0.03 | 0.48+0.03
CSCI-2 | 0.56+0.02 | 0.55+0.02 | 0.55+0.03
CSCI-3 | 0.48+0.04 | 0.48+0.04 | 0.48+0.05
CSCI-4 /0.53+0.03 | 0.52+0.04 | 0.51+0.03
CSCL-5 | 0.43+0.02 | 0.43+0.02 | 0.42+0.02
CSCI-6 | 0.63+0.03 | 0.58+0.03 | 0.57+0.03
CSCI-7 | 0.57+0.02 | 0.58+0.01 | 0.56+0.02
CSCI-8 | 0.52+0.02 | 0.49+0.03 | 0.47+0.02
CSCI-9 N.0.61+0.03 | 0.60+0.05 | 0.57+0.03/
CSCI-10 | 0.58+0.04 | 0.56+0.04 | 0.56+0.04

Dataset GPA BMF CSID

CSCI-11 | 0.68+0.06 | 0.66+0.04 | 0.67+0.03
CSCI-12 | 0.58+0.04 | 0.51+0.04 | 0.48+0.01
CSCI-13 L 0.67+0.03 | 0.55+0.05 | 0.54+0.03
CSCI-14 | 0.70+0.06 | 0.62+0.03 | 0.65+0.07
CSCI-15 | 0.56+0.03 | 0.56+0.06 | 0.57+0.03
CSCI-16 | 0.52+0.03 | 0.51+0.03 | 0.50+0.02
CSCI-17 | 0.60+0.02 | 0.58+0.05 | 0.59+0.05
CSCI-18 | 0.57+0.03 | 0.56+0.05 | 0.55+0.04
CSCI-19 L0.68+0.04 | 0.70+0.04 61+0.04
CSCI-20 | 0.61+0.06 | 0.58+0.02 | 0.63+0.04
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Take-home points

"Concluding remarks

= Nonlinear system identification is tensor completion

= Provably correct system identification is possible under low rank conditions

= Low-rank models can model highly nonlinear functions

= Even if not low-rank: Identification of principal components of the nonlinear mapping
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THANK YOU!

Questions?
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