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Epidemic Prediction

= Pandemic diseases
= Serious threat to public heath, economy and daily life.
= Accurate measurement, modeling and tracking are needed.
= Effective mitigation measures.
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= Case counts for different locations and signals over time.
= Prediction of epidemic trends for all locations simultaneously.
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Sneak Preview

= |n this work we:
" Propose STELAR, a data efficient tensor factorization method to predict the evolution of epidemic trends.
= Perform experiments on real county- and state-level COVID-19 data.
= Demonstrate superior prediction performance compared to baselines.
= |dentify interesting latent patterns of the epidemic.
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Related Work

= Mechanistic Models

= Susceptible-Infected-Recovered (SIR) model [Kermack and McKendrick, 1927].

= Susceptible-Exposed-Infected-Recovered (SEIR) [Cooke and Van Den Driessche, 1996].
= Rely on a system of differential equations.

= Do not require much training data.

= Restrictive, cannot leverage rich / “collaborative” information.

= Machine Learning Models
= Time series prediction problem.
= LSTM [Chimmula and Zhang 2020], [Yang et al. 2020].
= GNN [Gao et al, 2020], [Kapoor et al. 2020].
= Learn only from data.
= Usually require large amount of training data.

= This work

= Nonnegative tensor factorization (Canonical Polyadic Decomposition).
= Latent epidemiological dynamics (SIR model) to capture common epidemic profile sub-types.
= Learns from limited data and can extract interpretable latent components.



Canonical Polyadic Decomposition (CPD)

= A 3-way tensor X € RM*xNxL gdmits a decomposition of rank K if it can be decomposed as a
sum of K rank-1 tensors

K X — [[A, B7 C]]
X=>,_,a,0bgocg
Cy CKk I il
— - LxK
b bk C | = I || € REX
X — —— -+ -+ — :b1 bK:
o Ha1 HaK B | = ... [ c RVXK
= Element-wise: X (m,n,t) = Z,‘Z{:l A kb kCt k- A | - I i RMxK
= Matrix unfolding: X! = A(C © B)? L 1 <

= Vector: vec(X) = (CoOB ® A)1.



The SIR Model

= SIR model [Kermack and McKendrick, 1927].
= Susceptible S(t), infected I(t) and recovered R(t) subpopulations. N is the total population.

S(t) - S(t—1)=—BS(t = )I(t—1)/N o — T |
I(t)—I(t—1)=BS(t — 1)I(t —1)/N F|yI(t — 1) | o 'reced 7 Newiiecions Gesled
R(t)— R(t—1) =|vI(t—1) 0.8
|3 : rate of spread. 0.6-
*[Y: recovery rate. oa.
= New infections: C’(t) - 55(15 _ 1)I(t _ 1)/N o2l
" |[n practice, we observe C(t) and want to find the model parameters. 0.0
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= Example
* N =1,5(0) = 0.95, 1(0) = 0.05, R(0) = 0, 8 = 0.4,y = 0.1.



Key ldea c

= M locations
= Counties/states in the US.

locations

= N signals
= Daily new infections, ICU patients, hospitalized patients, etc.

signals
= At time t, value of the nth signal at location m is denoted as X . ¢-

= The dataset can be naturally described by a 3-way spatio-temporal tensorX € RMxNxL,

X(m7 n, t) = xm,n,t

= We would like to predict the frontal slabs X(:,:,¢) for L, timesteps ahead.

C1 (7€ Impose SIR constraints on the latent time factor!
b1 bK e = BrSk(t — 1)1 (t — 1)
X — i i — Sk(t) = Sk(t = 1) = BpSu(t = DIkt = 1)
- |:| aq |:| ag Iio(t) = L(t = 1) 4 BeSk(t — ) Ii(t — 1) — iedie(t — 1)
s = Sk(0), i = I1(0)




Problem Formulation

K L
min X — [A, B, CJ|% +u (JAI% + B3 + 1CI3) +v 3" 3 (et — BuSu(t — DI(t - 1))’

ABC., "
B8 l k—1t=1

data fitting term  Frobenius norm regularization SIR model regularization

s.t.|A>0B>0,C >0,
3>0,7,>05>0,1>0

Sk(t) = Sk(t — 1) — BrSk(t — 1) Ix(t — 1),
I (t) = I(t — 1) + BrSk(t — DIe(t — 1) — vedi(t — 1),
Sk — Sk(O),ik = Ik-<0).




Prediction

After the convergence of the optimization algorithm, we have estimates of
A, B, C and parameters {81, -+, Bk}, {71, -+, 7K} {51, 8k}, {i1, 00+ ik}

K K K
X:[[A,B,C]] M| A N| B L| C
C(t,:) e RE

Let C(t,:) € R be the prediction of the temporal information at a future time point t using estimates

{617'“ 75K}7 {717'“ 7’YK}7 {317"' 7SK}7 {7:17"' 7ZK}

We predict an entire “future” slab using X(;, ., t) = Adiag(C(t, :))BT.



Prediction

K

K
Element-wise: X(m, n, t) = Z am,kbn,; Ct.k Zlam’kbn’k 3
k=1 k=1

Skt — D) Ix(t—1).

R~

— Our model expresses the evolution of a signal as weighted sum of K separate SIR models.
—> Captures correlations between different locations and signals through their latent representations.
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Optimization

K L
uin X — [A,B, C |7 +u (|AIF + IBIF + [ClI5) +v Y Y (rr = BeSi(t = DIn(t — 1)
IB; 9 .7 k:l tzl
y7Y,S,1
s.t. A>0,B>0,C>0,

B>0,v,>0,s>0,i>0

Sk(t) = Skt — 1) = BeSk(t — 1) I (t — 1),

I (t) = In(t = 1) + BeSk(t = ) Ip(t — 1) — v Lp(t — 1),
s = Sk(0),ix = I (0).

To update factor matrices A, B, C and the SIR model parameters we rely on alternating optimization.

By fixing all variables except for A the resulting subproblem is a nonnegative least squares problem.
Similarly, for B, C.

For the SIR model parameters, we rely on a few projected gradient descent steps.



Experiments

= Dataset information
= US county-level data from the Johns Hopkins University (JHU) [Dong, Du and Gardner, 2020]

= Large patient claims dataset from IQVIA.

= Daily counts of 12 International Classification of Diseases ICD-10 codes observed in each county.
= Current Procedural Terminology (CPT) codes related to hospitalization and utilization of intensive care unit (ICU).

= The total number of counties was 133.

" The total number of signals was 15.
" The time window was from 03-24-2020 to 06-26-2020 (95 days).

= First experiment : 85 days used for training, 10 days for test.
= Second experiment : 80 days used for training, 15 days for test.

= Metrics: RMSE, MAE.



Results — County-level Prediction

New infections

Hospitalized patients

L, =10 L, =15
Model RMSE | MAE | RMSE | MAE
Mean A1 | 122.0 | 269.5 | 108.5
SIR @ 622 || 159.1 | 63.6
SEIR T 7720 | 1632 | 69.7
LSTM (w/o feat.) | 203.6 | 77.1 | 191.0 | 81.7
LSTM (w/ feat.) | 1623 | 682 | 1876 | 783
STAN 164.2 | 61.1 ||| 1526 | 61.8
STELAR (v =0) | 149.2 | 615 | 152.8 | 66.0
STELAR 1275 | 55.6|[136.1 | 61.7

= New infections

L,=10 L,=15
Model RMSE | MAE | RMSE | MAE
Mean 125.0 77.0 123.3 77.1
SIR 46.5 27.2 48.7 27.7
SEIR 39.1 23.9 41.1 25.7
LSTM (w/o feat.) | 45.6 23.6 54.8 31.2
LSTM (w/ feat.) 2.5 23.3 A7.5 26.8
STAN §0.6 17.3 42.8 24.2
STELAR (v =0) | _28. 16.6 46.8 21.1
STELAR 24.0 | 15.1 || 36.0 | 18.0

= L, =10 : 18% lower RMSE and 9% lower MAE compared to the best performing baselines.

= L, =15 :10% lower RMSE and the same MAE compared to the STAN model.

= Hospitalized patients
= L, =10 :21% lower RMSE and 12% lower MAE compared to STAN.
= L, =15:12% lower RMSE and 25% lower MAE compared to the best baselines.
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Results — State-level Prediction

New infections

Hospitalized patients

L,=10 L,=15
Model RMSE | MAE | RMSE | MAE
Mean 309.0 | 258.7 | 325.8 | 273.1
SIR 186.1 | 133.8 | 186.9 | 134.5
SEIR 162.4 | 127.0 | 162.6 | 130.2
LSTM (w/o feat.) | 187.5 | 138.1 | 419.7 | 356.0
LSTM (w/ feat.) | 197.9 | 151.6 | 359.2 | 286.5
STAN 74.1 60.1 | 100.5 | 79.6
STELAR (v =0) | T40.8 | 1040 | 1278 | 95.0
STELAR 117.8 89.8 107.3 | 794

L, = 10 L,=15
Model RMSE | MAE | RMSE | MAE
Mean 685.5 | 553.9 | 729.2 | 586.0

SIR 343.4 | 252.4 | 367.8 | 266.0
SEIR 109.0 | 97.6 | 192.5 | 154.3

LSTM (w/o feat.) | 280.9 | 187.5 | 416.1 | 308.7

LSTM (w/ feat.) | 295.3 | 182.3 | 276.0 | 208.5
STAN 100.3 | 73.6 | 177.7 | 144.7

STELAR (v =0) | 1183 | 844 | 1266 | 75.2

STELAR 56.8 | 439 | 113.6 | 838

In all cases except one, joint optimization and SIR model fitting improves the performance.



Results — Interpretability

Component 1 ‘ Component 2 | Component 3
New York (NY) L.A (CA) Nassau (NY)
Westchester (NY) Cook (IL) L.A (CA)
: : — Nassau (NY) Milwaukee (WI) Essex (NJ)
We trained our model using K= 30. Bergen (NJ] Fairfax (VA) Wayne (MD)
Miami-Dade (FL) | Hennepin (MN) Oakland (MI)
ol | oo o Hudson (NJ) Montg. (MD) | Middlesex (NJ)
0.175 Union (NJ) P. George’s (MD) | New York (NY)
0.150- Phila. (PA) Dallas (TX) Phila. (PA)
0.125. Passaic (NJ) Orange (CA) Cook (IL)
0,100 Essex (NJ) Harris (TX) Bergen (NJ)
0.075 Counties that contribute more to each of the strongest 3 rank-1 components.
0.050
0.025 - x
oo0| Component 1 | Component 2 | Component 3
° 1 %0 D:(;,S 060 7080 New infections | New infections | Hosp. patients
Hosp. patients | Hosp. patients | ICU patients
The strongest 3 temporal components of our model. ICU patients | ICU patients 796
J96 J96 N17
R09 RO05 R06

Signals that contribute more to each of the strongest 3 rank-1 components.

J96--Respiratory failure, N17--Acute kidney failure, RO5--Cough, R0O6--Abnormalities of breathing, R09--Other symptoms and signs

. . . . 15
involving the circulatory and respiratory system.



Concluding Remarks

= We proposed STELAR — a data efficient and interpretable method based on constrained nonnegative
tensor factorization.

= Our method enables long-term prediction of future slabs by incorporating latent epidemiological
regularization.

= We demonstrated the ability of our method to make accurate predictions on real COVID-19 data.
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