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Epidemic Prediction
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§ Pandemic diseases
§ Serious threat to public heath, economy and daily life.
§ Accurate measurement, modeling and tracking are needed. 
§ Effective mitigation measures.

§ Task
§ Case counts for different locations and signals over time.
§ Prediction of epidemic trends for all locations simultaneously. 



Sneak Preview
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§ In this work we:

§ Perform experiments on real county- and state-level COVID-19 data. 
§ Demonstrate superior prediction performance compared to baselines.
§ Identify interesting latent patterns of the epidemic.

§ Propose STELAR, a data efficient tensor factorization method to predict the evolution of epidemic trends.



Related Work
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§ Mechanistic Models
§ Susceptible-Infected-Recovered (SIR) model [Kermack and McKendrick, 1927].
§ Susceptible-Exposed-Infected-Recovered (SEIR) [Cooke and Van Den Driessche, 1996].
§ Rely on a system of differential equations.
§ Do not require much training data.
§ Restrictive, cannot leverage rich / “collaborative” information.

§ This work
§ Nonnegative tensor factorization (Canonical Polyadic Decomposition).
§ Latent epidemiological dynamics (SIR model) to capture common epidemic profile sub-types.
§ Learns from limited data and can extract interpretable latent components.

§ Machine Learning Models
§ Time series prediction problem.
§ LSTM [Chimmula and Zhang 2020], [Yang et al. 2020].
§ GNN [Gao et al, 2020], [Kapoor et al. 2020]. 
§ Learn only from data.
§ Usually require large amount of training data.



Canonical Polyadic Decomposition (CPD)
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§ A 3-way tensor                          admits a decomposition of rank K if it can be decomposed as a 
sum of K rank-1 tensors

§ Element-wise:
§ Matrix unfolding:

§ Vector: 



The SIR Model
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§ SIR model [Kermack and McKendrick, 1927].
§ Susceptible S(t), infected I(t) and recovered R(t) subpopulations. N is the total population.

§ Example
§

§ : rate of spread.

§ : recovery rate.

§ In practice, we observe C(t) and want to find the model parameters.

§ New infections:



Key Idea
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§ M locations 
§ Counties/states in the US.

§ N signals
§ Daily new infections, ICU patients, hospitalized patients, etc. 

§ At time t, value of the nth signal at location m is denoted as 
§ The dataset can be naturally described by a 3-way spatio-temporal tensor

§ We would like to predict the frontal slabs                   for       timesteps ahead.

Impose SIR constraints on the latent time factor!



Problem Formulation
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Prediction
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After the convergence of the optimization algorithm, we have estimates of
and parameters 

Let                      be the prediction of the temporal information at a future time point t using estimates

We predict an entire “future” slab using



Prediction
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Element-wise:

Our model expresses the evolution of a signal as weighted sum of K separate SIR models.
Captures correlations between different locations and signals through their latent representations.



Optimization
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To update factor matrices                    and the SIR model parameters we rely on alternating optimization. 

By fixing all variables except for      the resulting subproblem is a nonnegative least squares problem.
Similarly, for 
For the SIR model parameters, we rely on a few projected gradient descent steps.



Experiments
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§ Dataset information
§ US county-level data from the Johns Hopkins University (JHU) [Dong, Du and Gardner, 2020]
§ Large patient claims dataset from IQVIA.

§ Daily counts of 12 International Classification of Diseases ICD-10 codes observed in each county. 
§ Current Procedural Terminology (CPT) codes related to hospitalization and utilization of intensive care unit (ICU).

§ The total number of counties was 133.
§ The total number of signals was 15.
§ The time window was from 03-24-2020 to 06-26-2020 (95 days).

§ First experiment : 85 days used for training, 10 days for test.
§ Second experiment : 80 days used for training, 15 days for test.

§ Metrics: RMSE, MAE.



Results – County-level Prediction
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New infections Hospitalized patients

§ New infections 
§ : 18% lower RMSE and 9% lower MAE compared to the best performing baselines. 
§ : 10% lower RMSE and the same MAE compared to the STAN model.    

§ Hospitalized patients
§ : 21% lower RMSE and 12% lower MAE compared to STAN.
§ : 12% lower RMSE and 25% lower MAE compared to the best baselines.



Results – State-level Prediction
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New infections Hospitalized patients

In all cases except one, joint optimization and SIR model fitting improves the performance.



Results – Interpretability
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J96--Respiratory failure, N17--Acute kidney failure, R05--Cough, R06--Abnormalities of breathing, R09--Other symptoms and signs 
involving the circulatory and respiratory system.

We trained our model using K= 30.

The strongest 3 temporal components of our model.

Counties that contribute more to each of the strongest 3 rank-1 components.

Signals that contribute more to each of the strongest 3 rank-1 components.



Concluding Remarks
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§ We proposed STELAR – a data efficient and interpretable method based on constrained nonnegative 
tensor factorization.  

§ Our method enables long-term prediction of future slabs by incorporating latent epidemiological 
regularization. 

§ We demonstrated the ability of our method to make accurate predictions on real COVID-19 data.



THANK YOU!
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Questions?


