Supervised Learning via Ensemble Tensor Completion

N. Kargas University of Minnesota N.D. Sidiropoulos University of Virginia

2020 Asilomar Conference on Signals, Systems, and Computers.

The Supervised Learning Problem

General nonlinear function identification

- Supervised' from input-output data
- Function approximation problem
- Identifiability, performance, complexity...

Previous work:

- Canonical System Identification (CSID)
- Based on tensor principal components
- Advantages: `universal', intuitive, interpretable, backed by theory
- Suitable only for discrete input...

Categorical (classification) Real-valued (prediction, regression)

Roadmap

- Tensor Decomposition
- Canonical System Identification (CSID)
- Proposed Method: Ensemble Tensor Completion
- Experiments
- Conclusion

Canonical Polyadic Decomposition (CPD)

An N-way tensor (multi-way array) admits a decomposition of rank R it can be decomposed as a sum of R rank-1 tensors

$$\mathcal{X} = \sum_{r=1}^{R} \mathbf{A}_1(:,r) \circ \mathbf{A}_2(:,r) \circ \cdots \circ \mathbf{A}_N(:,r)$$

• Tensor rank is smallest R for which such decomposition exists \rightarrow Canonical

- Element-wise: $\mathcal{X}(i_1, \dots, i_N) = \sum_{r=1}^R \prod_{n=1}^N \mathbf{A}_n(i_n, r)$
- Matrix unfolding: $\mathcal{X}^{(n)} = (\mathbf{A}_N \odot \cdots \odot \mathbf{A}_{n+1} \odot \mathbf{A}_{n-1} \cdots \odot \cdots \mathbf{A}_1) \mathbf{A}_n^T$
- Vector: $\operatorname{vec}(\mathcal{X}) = (\mathbf{A}_N \odot \cdots \odot \mathbf{A}_1)\mathbf{1}$
- Property: Unique under mild conditions!

Canonical System Identification (CSID)

- Single high-order tensor for learning a general nonlinear system
- Each input vector $[\mathbf{x}_m(1), \mathbf{x}_m(2), \mathbf{x}_m(3)]^T$ is viewed as a cell multi-index and the cell content is the estimated response of the system

Kargas, N., and Sidiropoulos, N. D. "Nonlinear System Identification via Tensor Completion", AAAI 2020, NYC, NY.

Canonical System Identification (CSID)

Assuming a low-rank CPD model, the problem of finding the rank-R approximation which best fits the data is formulated as:

where
$$f(\mathbf{x}_{m}; {\{\mathbf{A}_{n}\}}_{n=1}^{N}) = \sum_{r=1}^{R} \prod_{n=1}^{N} \mathbf{A}_{n}(\mathbf{x}_{m}(n), r)$$

Kargas, N., and Sidiropoulos, N. D. "Nonlinear System Identification via Tensor Completion", AAAI 2020, NYC, NY.

Canonical System Identification (CSID)

Kargas, N., and Sidiropoulos, N. D. "Nonlinear System Identification via Tensor Completion", AAAI 2020, NYC, NY.

Ensemble Learning

Ensemble learning

- Combination of multiple ``weak'' models outperforms a single model
- Examples: Bagging, boosting

Ensemble Tensor Completion

- Bagging
 - Create different training sets by sampling
 - Parallel training
 - Average the results

- Boosting
 - Sequential training
 - Models are fit on the prediction errors

Bagging

- Step 1: Create different training datasets by sampling with replacement
- Step 2: Select a discretization method for each dataset
 - Intervals have identical widths
 - Intervals have same number of points
 - K-means
- Step 3: Solve K independent problems using Stochastic Gradient Descent (SGD): $\min_{\{\mathbf{A}_n\}^N} \frac{1}{M} \sum_{m=1}^{M} \left(y_m - f\left(\mathbf{x}_m; \{\mathbf{A}_n\}_{n=1}^N\right)\right)^2$

$$m=1 + \sum_{n=1}^{N} \rho \|\mathbf{A}_{n}\|_{F}^{2} + \sum_{n=1}^{N} \mu \|\mathbf{T}_{n}\mathbf{A}_{n}\|_{F}^{2},$$

• Combine the results: $f_{\text{CSID}-\text{Bag}}(\mathbf{x}) = \sum_{k=1}^{K} w_k f_k \left(\mathbf{x}; \{\mathbf{A}_n^k\}_{n=1}^N \right), \ w_k = \frac{1/\text{Err}_k}{\sum_{k=1}^{K} 1/\text{Err}_k}$

Boosting (Forward State-wise Additive Modeling)

- Models are fit on the prediction errors
- Step 1: At iteration k, choose between 3 discretization methods
- Step 2: Solve:

$$\min_{\{\mathbf{A}_{n}^{k}\}_{n=1}^{N}} \frac{1}{M} \sum_{m=1}^{M} \left(y_{m} - \widehat{y}_{m}^{k-1} - f_{k} \left(\mathbf{x}_{m}; \{\mathbf{A}_{n}^{k}\}_{n=1}^{N} \right) \right)^{2} + \sum_{n=1}^{N} \rho \|\mathbf{A}_{n}^{k}\|_{F}^{2} + \sum_{n=1}^{N} \mu \|\mathbf{T}_{n}\mathbf{A}_{n}^{k}\|_{F}^{2},$$

where $\widehat{y}_{m}^{k-1} = \sum_{k'=1}^{k-1} f_{k} \left(\mathbf{x}_{m}; \{\mathbf{A}_{n}^{k'}\}_{n=1}^{N} \right).$

- At each iteration, a new model is added to the expansion
- Predict the output of new data points as

$$f_{\text{CSID-Boost}}(\mathbf{x}) = \sum_{k=1}^{K} f_k \left(\mathbf{x}; \{\mathbf{A}_n^k\}_{n=1}^N \right).$$

Experiments

- Compare the ensemble models against a single CSID model
- Regression task using 4 UCI repository datasets
- We combine K=10 CSID models to build the ensemble models
- We fix the alphabet size to be I=20 and discretize all continuous inputs

- 85% training, 15% test (5-fold cross-validation for parameter selection)
- Evaluate the performance using RMSE
- All the methods are trained using Adam with a learning rate 1e-2 for a maximum of 50 epochs

Results

Dataset	N	М
QSAR AQUATIC TOXICITY (QSAR)	8	546
CONCRETE COMPRESSIVE STRENGTH (CCS)	9	1030
CYCLE POWER PLANT (CPP)	4	9568
PHYSICOCHEMICAL PROPERTIES (PP)	9	45730

Table 1. Detect Info -----

 Table 2: Comparison of RMSE performance of different models on multi-output
regression.

Dataset	CSID	CSID-Bag (10)	CSID-Boost (10)
QSAR	1.51	1.37	1.49
CCS	6.25	5.69	5.46
CPP	4.22	3.89	3.97
PP	4.29	3.95	3.98

RMSE Performance vs Number of Models

Take-home points

Concluding remarks:

- Tensor based method for supervised learning
- Ensemble learning can enhance the prediction accuracy of the CSID model
- Counter the performance degradation resulting from the discretization step

Coming up:

- So far, non-parametric; what if we know something about f(x)? in review
- Other tensor models

THANK YOU!