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Real data is complex ( high dimensional + seemingly unstructured)

Main goal : — Probability Mass Function (PMF) estimation

Given discrete variables X1, ..., X, construct Px,
based on realizations sampled from the true PMF.

»Why?
* Derive optimal estimators
* Impute missing data
 Anomaly detection
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Challenge : — Curse of Dimensionality

Joint PMF estimation is often considered impossible

(10 variables, 10 values each — 101%parameters )

We will present:

» Effective modeling of a joint PMF using hierarchical tensor decomposition

» Leveraging the mere definition of conditional probability

» Parallelization - fast computations (no data sharing, smaller subproblems)
» Better modeling capabilities (regional low-rank structures)
 Flexibility (e.g., control resolution level)
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AS(:al) A3(2,2) AS(:aF)
— A(l) { AQ(:al) A(Z) { AZ(:92)_|_. . -—|—)\(F) A2(:,F)

X =+
|A1(2,1) |A1(Z,2) |A1(:,F)

» An N-way tensor X € RI1xI2x--XIn js g multidimensional array whose
elements are indexed by N indices.

» Any tensor can be decomposed as a sum of F rank-1 tensors.
X =2 ANALG f) o Asls, f) oo Ax(:, f)

X(ilai% .. -aiN) — Z?:l A(f) Hf,]:/—:l An(@na f)
X =[N\A1,....,AN]
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Probability Tensors — Naive Bayes model “ “VIRGINIA

A3(:7 ]-): A3(2,2): AS( F)
X — A(l) AQ(:a ]-) _|_ A(Z) AZ(:92) _|_. . —I— )\(F AZ( F)
|A1(2,1) |A1(Z,2) Al( F)

» Ajoint PMF of X1, ..., Xy can be modeled as a probability tensor X, where:
e Size of each dimension — the alphabet size /1,...,Ixn
* The indexed elements — X(i1,...,in) = Px, .. x5 (%1,---,IN)

» Every joint PMF admits a naive Bayes representation via the CPD [Kargas et al. 2018]
Pxyxn (s vin) = 3y Pu(f) TInzy Px,a(inlf)
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Advantage

* The number of free parameters in the tensor X — O(IV)
Approximating by a low-rank CPD , number of free parameters — O(NIF)

Considerations

* Large alphabet (discrete, finely-quantized continuous random variables)
— high memory / computational complexity

e PMF tensor usually contains local all-zero regions
* Not flexible — only 1 parameter to control
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Decomposition into coarse / fine PMF " 7VIRGINIA

We define the following two mappings:
S 0i)=[£] e {1,.. M}
r(i) ;=14 — L((i) — 1) e{l,...,L},
then i = L(¢(i) — 1) + r(7)

12305608 Pr(X = i) = Pr(£(X) = £(i), r(X) = r(i))
Y = Pr{E(X) = €@)Pr(r(X) = () | 6(X) = ().
Pr(X =7) = Pr(4 < X < 8)Pr(Z = 3) Defining, Y := ((X) and Z := r(X)

07) = 2,7(7) = 3 Px (i) = Py (£(i)) Pzpy (r(@) | £()).



Decomposition into coarse / fine PMF

y X
fiils R eRsTY

X, Extending to three random variables X1, X, X3

Py, 24,2517, Ya,v5 ((11), 7(i2),

Xo |
<
12545678 "
Pr(X1 =7,X9=3,X3 = 3) Coarse PMF

Fine PMF

 Restrict to smaller universe
e Conditional distributions resolve a finer level of detail

N PXl,Xg,Xg (7:173.2) i3) — PYl,Yz,Ya (6(7’1)78(22)’3(7’3))

r(is) | £(ix), £(i2), £(is)).
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Decomposition into coarse / fine PMF " 7VIRGINIA

Extending to three random variables X, X5, X3
P(iy,i2,13) Z,Q(f(il),f(iz)ag(is))se(il),eug),wg)(?“(’il)a r(iz), r(is))-

/
e IWS /) ; ,
/ = - _
B/ ’_L g/ ’ —»)(_4—
low-resolution refinement coarse s N
tensor tensor
Q). ¢ ZA D As(lli). F)As(Llis). f)
(9

sw,g(iz),e(ig)(r(m,r(m,r(m))—ZA@')(f)A(g)(() AL (r(iz), [)AY (r(i3), f)
f=1
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A4

Split data in blocks — each processor decomposes a different
subtensor, has access to points falling in its own block.

1 2

4

\ * All decompositions are computed completely in parallel

i i * Each tensor is much smaller (speeds up computations)

jl -
j e Sub-tensors of lower rank

C

|
!
K,
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Consider more than two decomposition layers :

* Split each dimension I1,..., 1, in half

e Assign a binary label (dense or sparse) to each block

* On the next layer, split only the the dense blocks

dense .
Subtensor rank assignment

: L*F
 Parameters equal to single CPD — Rfine = =

sparse * Higher rank to dense subtensors



Algorithmic Approach

coarse

/

fine
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D X |Y — z X (1 | X(i1,..-,iN)
KL(_| —) ’ 219000y IN —(Z].‘) JZN) Og Y(il ____ ’iN)
LA Dir (XA A Ax])
subject to A >0,
17X =1,

A,>0, n=1...N,

17A, =17, n=1,...,N,

 Approximate each refinement tensor + low resolution tensor by a CPD model
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Experiments
Method Skin Bank notes Activity Shuttle Older people Datasets N M
H-CPD Test 2.560 10.716 3.356 0.612 1.171 Skin 4 245057
F-CPD Test 2.427 12.126 3.442 0.676 1.341 Bank notes 5 1372
Activity 9 75128
KL divergence of test set Shuttle 9 58000
Older people 6 100000

* More reliable joint distribution
 tM — PMF learning is refined both in Hierarchical and Full CPD
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Experiments ""“

Method Skin Bank notes Activity Shuttle Older people Datasets N M
H-CPD Test 2.560 3.356 0.612 1.171 Skin 4 245057
F-CPD Test 2.427 § 3.442 0.676 1.341 Bank notes 5 1372

Activity 9 75128

KL divergence of test set Shuttle 9 58000

Older people 6 100000

Binary | Multiclass
Method Skin Bank notes Activity Shuttle Older people

SVM 92.879 98.909 65.983 90.732 90.282
Naive Bayes 92.434 87.636 70.146 90.767 91.453
Decision tree  99.934 97.818 96.664 98.008 96.152
Full model  99.634 ‘ 87.818 96.701 97.767 94.725
Hierarchical  99.593 98.916 96.762 97.861 94.799

Prediction accuracy
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 Our method is always either comparable or superior to the baselines

* Keep in mind: H-CPD is a general tool for joint PMF estimation
* Models any desired optimal estimator without any additional retraining
* Handles randomly missing variables

Binary | Multiclass
Method Skin Bank notes Activity Shuttle Older people
SVM 92.879 98.909 65.983 90.732 90.282
Naive Bayes 92.434 87.636 70.146 90.767 91.453
Decision tree  99.934 97.818 96.664 98.008 96.152
Full model  99.634 87.818 96.701 97.767 94.725
Hierarchical  99.593 98.916 96.762 97.861 94.799

Prediction accuracy
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 Our method is always either comparable or superior to the baselines

* Keep in mind: H-CPD is a general tool for joint PMF estimation
* Models any desired optimal estimator without any additional retraining
* Handles randomly missing variables

Missing data % Decision tree H-CPD

20 87.539 94.740
30 83.151 92.467
40 81.630 90.473
50 80.918 89.622

Accuracy with missing data on skin dataset.
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 Our method is always either comparable or superior to the baselines

* Keep in mind: H-CPD is a general tool for joint PMF estimation
* Models any desired optimal estimator without any additional retraining
* Handles randomly missing variables

Missing data % DT with H-CPD DT with mean

20 95.798 87.539
30 95.214 83.151
40 92.455 81.630
50 91.398 80.918

Accuracy with imputed data on skin dataset.
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Novel method for joint PMF estimation

Competitive advantages

* Enables accurate distribution estimate
* Faster and at lower complexity due to the “divide and conquer” approach

* Swiss knife for multiple ML problems (classification, missing value
imputation...)
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Thank you!

Questions




