

DSW 2019 IEEE Data Science Workshop

Statistical Learning using Hierarchical Modeling of Probability Tensors

Magda Amiridi (joint work with Nikos Kargas, Nikos Sidiropoulos) June 3, 2019

Motivation

Real data is complex (high dimensional + seemingly unstructured)

Main goal : \longrightarrow Probability Mass Function (**PMF**) estimation Given discrete variables X_1, \ldots, X_N , construct $\widehat{P}_{X_1,\ldots,X_N}(i_1,\ldots,i_N)$ based on realizations sampled from the true PMF.

≻Why?

- Derive optimal estimators
- Impute missing data
- Anomaly detection

• ...

Our Contribution

<u>Challenge</u> : \longrightarrow Curse of Dimensionality Joint PMF estimation is often considered impossible (10 variables, 10 values each $\longrightarrow 10^{10}$ parameters)

We will present:

- > Effective modeling of a joint PMF using **hierarchical tensor decomposition**
- > Leveraging the mere definition of **conditional probability**
 - **Parallelization** fast computations (no data sharing, smaller subproblems)
 - <u>Better modeling capabilities</u> (regional low-rank structures)
 - <u>Flexibility</u> (e.g., control resolution level)

Canonical Polyadic Decomposition

> An N-way tensor $\underline{\mathbf{X}} \in \mathbb{R}^{I_1 \times I_2 \times \cdots \times I_N}$ is a multidimensional array whose elements are indexed by N indices.

Any tensor can be decomposed as a sum of F rank-1 tensors.

$$\underline{\mathbf{X}} = \sum_{f=1}^{F} \boldsymbol{\lambda}(f) \mathbf{A}_{1}(:, f) \circ \mathbf{A}_{2}(:, f) \circ \cdots \circ \mathbf{A}_{N}(:, f)$$
$$\underline{\mathbf{X}}(i_{1}, i_{2}, \dots, i_{N}) = \sum_{f=1}^{F} \boldsymbol{\lambda}(f) \prod_{n=1}^{N} \mathbf{A}_{n}(i_{n}, f)$$

$$\mathbf{\underline{X}} = \llbracket oldsymbol{\lambda}, \mathbf{A}_1, \dots, \mathbf{A}_N
rbracket$$

Preliminaries (1/3)

Probability Tensors – Naive Bayes model

 \succ A joint PMF of X_1, \ldots, X_N can be modeled as a **probability tensor** $\underline{\mathbf{X}}$, where:

- Size of each dimension \longrightarrow the alphabet size I_1, \ldots, I_N
- The indexed elements $\longrightarrow \underline{\mathbf{X}}(i_1, \ldots, i_N) = P_{X_1, \ldots, X_N}(i_1, \ldots, i_N)$

> Every joint PMF admits a naive Bayes representation via the CPD [Kargas et al. 2018]

$$P_{X_1,\dots,X_N}(i_1,\dots,i_N) = \sum_{f=1}^F P_H(f) \prod_{n=1}^N P_{X_n|H}(i_n|f)$$

Model PMF with a single large tensor?

<u>Advantage</u>

• The number of free parameters in the tensor $\underline{\mathbf{X}} \longrightarrow \mathcal{O}(I^N)$ Approximating by a low-rank CPD , number of free parameters $\longrightarrow \mathcal{O}(NIF)$

Considerations

- Large alphabet (discrete, finely-quantized continuous random variables)
 high memory / computational complexity
- PMF tensor usually contains local all-zero regions
- Not flexible only 1 parameter to control

Decomposition into coarse / fine PMF

We define the following two mappings:

$$\begin{split} \ell(i) &:= \left\lceil \frac{i}{L} \right\rceil \in \left\{ 1, \dots, \left\lceil \frac{I}{L} \right\rceil \right\},\\ r(i) &:= i - L(\ell(i) - 1) \in \{1, \dots, L\},\\ \text{then } i &= L(\ell(i) - 1) + r(i) \end{split}$$

$$\begin{aligned} \Pr(X = i) &= \Pr(\ell(X) = \ell(i), r(X) = r(i)) \\ &= \Pr(\ell(X) = \ell(i)) \Pr(r(X) = r(i) \mid \ell(X) = \ell(i)). \end{aligned} \\ \text{Defining, } Y := \ell(X) \text{ and } Z := r(X) \\ P_X(i) &= P_Y(\ell(i)) P_{Z|Y}(r(i) \mid \ell(i)). \end{aligned}$$

Decomposition into coarse / fine PMF

- Restrict to smaller universe
- Conditional distributions resolve a finer level of detail

Decomposition into coarse / fine PMF

Extending to three random variables X_1, X_2, X_3

$$P(i_1, i_2, i_3) = Q(\ell(i_1), \ell(i_2), \ell(i_3))S_{\ell(i_1), \ell(i_2), \ell(i_3)}(r(i_1), r(i_2), r(i_3)).$$

$$\begin{bmatrix} I \\ L \end{bmatrix}^3$$

$$L^3$$

$$Iow-resolution$$

$$refinement$$

$$tensor$$

$$tensor$$

$$Q(\ell(i_1), \ell(i_2), \ell(i_3)) = \sum_{f=1}^{F} \lambda(f) \mathbf{A}_1(\ell(i_1), f) \mathbf{A}_2(\ell(i_2), f) \mathbf{A}_3(\ell(i_3), f)$$

$$S_{\ell(i_1), \ell(i_2), \ell(i_3)}(r(i_1), r(i_2), r(i_3)) = \sum_{f=1}^{F^{(g)}} \lambda^{(g)}(f) \mathbf{A}_1^{(g)}(r(i_1), f) \mathbf{A}_2^{(g)}(r(i_2), f) \mathbf{A}_3^{(g)}(r(i_3), f)$$

What have we accomplished?

. . .

Split data in blocks — each processor decomposes a different subtensor, has access to points falling in its own block.

- All **decompositions** are computed completely in **parallel**
- Each tensor is **much smaller** (speeds up computations)
- Sub-tensors of lower rank

3

Recursive splits – a Hierarchical approach

- Split each dimension I_1, \ldots, I_n in half
- Assign a binary label (dense or sparse) to each block
- On the next layer, split **only** the the dense blocks

Subtensor rank assignment

- Parameters equal to single CPD $\longrightarrow R_{\text{fine}} = \frac{L^2 F}{I^2}$
- Higher rank to dense subtensors

Algorithmic Approach

• Approximate each refinement tensor + low resolution tensor by a CPD model

\mathbf{Method}	\mathbf{Skin}	Bank notes	Activity	$\mathbf{Shuttle}$	Older people	Datasets	\mathbf{N}	\mathbf{M}
H-CPD Test	2.560	10.716	3.356	0.612	1.171	Skin	4	245057
F-CPD Test	2.427	12.126	3.442	0.676	1.341	Bank notes	5	1372
						Activity	9	75128
		KL diverger	nce of test se	et		Shuttle	9	58000
		0.000		-		Older people	6	100000

- More **reliable** joint distribution
- [†]M PMF learning is refined both in Hierarchical and Full CPD

\mathbf{Method}	\mathbf{Skin}	Bank notes	Activity	Shuttle	Older people	Datasets	\mathbf{N}	\mathbf{M}
H-CPD Test	2.560	10.716	3.356	0.612	1.171	Skin	4	245057
F-CPD Test	2.427	12.126	3.442	0.676	1.341	Bank notes	5	1372
						Activity	9	75128
		KL diverger	nce of test se	et		Shuttle	9	58000
						Older people	6	100000

	Binary			Multiclass		
Method	\mathbf{Skin}	Bank notes	Activity	Shuttle	Older people	
SVM	92.879	98.909	65.983	90.732	90.282	
Naive Bayes	92.434	87.636	70.146	90.767	91.453	
Decision tree	99.934	97.818	96.664	98.008	96.152	
Full model	99.634	87.818	96.701	97.767	94.725	
Hierarchical	99.593	98.916	96.762	97.861	94.799	

Prediction accuracy

- Our method is always either **comparable** or **superior** to the baselines
- Keep in mind: H-CPD is a *general tool* for joint PMF estimation
 - Models any desired optimal estimator without any additional retraining
 - Handles randomly missing variables

	Binary			Multiclass		
Method	\mathbf{Skin}	Bank notes	Activity	Shuttle	Older people	
SVM	92.879	98.909	65.983	90.732	90.282	
Naive Bayes	92.434	87.636	70.146	90.767	91.453	
Decision tree	99.934	97.818	96.664	98.008	96.152	
Full model	99.634	87.818	96.701	97.767	94.725	
Hierarchical	99.593	98.916	96.762	97.861	94.799	

Prediction accuracy

- Our method is always either **comparable** or **superior** to the baselines
- Keep in mind: H-CPD is a *general tool* for joint PMF estimation
 - Models any desired optimal estimator without any additional retraining
 - Handles randomly missing variables

Missing data $\%$	Decision tree	H-CPD
20	87.539	94.740
30	83.151	92.467
40	81.630	90.473
50	80.918	89.622

Accuracy with missing data on skin dataset.

- Our method is always either **comparable** or **superior** to the baselines
- Keep in mind: H-CPD is a *general tool* for joint PMF estimation
 - Models any desired optimal estimator without any additional retraining
 - Handles randomly missing variables

Missing data $\%$	DT with H-CPD	DT with mean
20	95.798	87.539
30	95.214	83.151
40	92.455	81.630
50	91.398	80.918

Accuracy with imputed data on skin dataset.

Novel method for joint PMF estimation

Competitive advantages

- Enables **accurate** distribution estimate
- Faster and at lower complexity due to the "divide and conquer" approach
- **Swiss knife** for multiple ML problems (classification, missing value imputation...)

Thank you!

Questions