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Real data is complex  ( high dimensional + seemingly unstructured) 

Main goal :         Probability Mass Function (PMF) estimation

Given discrete variables                           construct 

based on realizations sampled from the true PMF.

➢Why?
• Derive optimal estimators
• Impute missing data
• Anomaly detection
• …

Motivation
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Challenge :         Curse of Dimensionality

Joint PMF estimation is often considered impossible 

(      variables,       values each                  parameters )

We will present:

➢ Effective modeling of a joint PMF using hierarchical tensor decomposition

➢ Leveraging the mere definition of conditional probability
• Parallelization - fast computations (no data sharing,  smaller subproblems)

• Better modeling capabilities (regional low-rank structures) 

• Flexibility (e.g., control resolution level)

Our Contribution
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Canonical Polyadic Decomposition
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➢ An N-way tensor is a multidimensional array whose 
elements are indexed by N indices. 

➢ Any tensor can be decomposed as a sum of F rank-1 tensors.



Introduction/ Preliminaries (1/3) []

Probability Tensors – Naive Bayes model
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➢ A joint PMF of                       can be modeled as a probability tensor , where:
• Size of each dimension         the alphabet size
• The indexed elements 

➢ Every joint PMF admits a naive Bayes representation via the CPD [Kargas et al. 2018]
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Model PMF with a single large tensor? 
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Advantage

• The number of free parameters in the tensor 
Approximating by a low-rank CPD , number of free parameters 

Considerations

• Large alphabet (discrete, finely-quantized continuous random variables)
high memory / computational complexity

• PMF tensor  usually contains local all-zero regions  
• Not flexible – only 1 parameter to control
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Decomposition into coarse / fine PMF
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We define the following two mappings:

then

Defining, 
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Decomposition into coarse / fine PMF
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Extending to three random variables 

Coarse PMF Fine PMF

• Restrict to smaller universe
• Conditional distributions resolve a finer level of detail
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Decomposition into coarse / fine PMF
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Extending to three random variables 

low-resolution
tensor

refinement
tensor

coarse
fine

×
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What have we accomplished?

Two-layer Approach (4/4) 10

Split data in blocks  each processor decomposes a different 
subtensor,  has access to points falling in its own block.

• All decompositions are computed completely in parallel

• Each tensor is much smaller (speeds up computations)

• Sub-tensors of lower rank



Introduction/ Preliminaries (1/3)

Recursive splits – a Hierarchical approach
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Consider more than two decomposition layers :

-

• Split each dimension                  in half 

• Assign a binary label (dense or sparse) to each block

• On the next layer, split only the the dense blocks

dense

sparse

Subtensor rank assignment

• Parameters equal to single CPD 
• Higher rank to dense subtensors
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Algorithmic Approach
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• Approximate each refinement tensor +  low resolution tensor by a CPD model

coarse

fine
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Experiments
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• More reliable joint distribution
• M  PMF learning is refined both in Hierarchical and Full CPD 
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Experiments
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Experiments
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• Our method is always either comparable or superior to the baselines

• Keep in mind: H-CPD is a general tool for joint PMF estimation
• Models any desired optimal estimator  without  any additional retraining
• Handles randomly missing variables
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Experiments
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Take - home points
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Novel method for  joint PMF estimation

Competitive advantages

• Enables accurate distribution estimate

• Faster and at lower complexity due to the “divide and conquer” approach

• Swiss knife for multiple ML problems (classification, missing value 
imputation…) 
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Thank you!

Questions


