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The era of big data...

• Tremendous amount of data is being generated every day.

• Many supervised learning tasks, e.g. tasks in computer vision, natural language
processing, speech processing heavily rely on labeled data.

• The volume of labeled data in deep learning datasets has grown to millions (e.g.
ImageNet, MS.COCO).
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The era of big data...

• One of the key performance boosters of the deep learning algorithms is labeled
data.

1

• But labeling is not a trivial task!!

1Source : https://www.normshield.com/machine-learning-in-cyber-security-domain-1-fundamentals/
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Crowdsourcing Paradigm

2

2Source : http://wires.wiley.com/WileyCDA/WiresArticle/wisId-WIDM1288.html
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Crowdsourcing Dataflow
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Crowdsourcing Dataflow
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What are the challenges?

• A natural thought for a crowdsourcing algorithm
is majority voting.

• Majority voting may not be always effective.

– Not all annotators are equally reliable.
– Each annotator may not be labeling all the

data due to limited pay, time or lack of
knowledge.

We need effective integrating algorithms for annotator responses.
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Dawid-Skene Model in Crowdsourcing Problem

• One of the simplest model in crowdsourcing, but elegent and very effective.

• Crowdsourcing problem was associated to the Naive Bayes Model by [Dawid and
Skene, 1979].

Y

X1 X2
... XM
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Dawid-Skene Model in Crowdsourcing Problem

• Under Naive Bayes Model, the joint probability of annotator responses is given
by,

Pr(X1 = k1, . . . , XM = kM) =

K∑
k=1

Pr(Y = k)

M∏
m=1

Pr(Xm = km|Y = k).

• We can define the confusion matrix Am ∈ RK×K for each annotator and the
prior probability vector d ∈ RK such that,

Am(km, k) := Pr(Xm = km|Y = k),

d(k) := Pr(Y = k)
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Confusion Matrix

Am of an annotator, K=3

• Note that columns of Am and d are probability measures, so it should be
nonnegetive and should sum to 1.

• So the goal is to estimate Am for m = 1, . . . ,M and d.
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Prior Art
• Dawid-Skene Model [Dawid and Skene, 1979] :

– Proposed the Naive Bayesian model for crowd sourcing problem.
– Based on ML estimation using expectation maximization (EM).
– Widely used, but a non-convex optimization, model identification and conver-

gence properties are unclear.

• Spectral Method [Zhang et al., 2014] :

– Model identification using orthogonal and symmetric tensor decomposition.
– Provides an initialization to Dawid-Skene estimator.
– Provably effective, but using third-order co-occurrences of the annotator re-

sponses, thus suffers higher sample complexity.

• Tensor CPD method [Traganitis et al., 2018] :

– Using Canonical Polyadic Tensor decmposition (CPD) technique.
– Established the identifiability, but not scalable since general tensor decomposi-

tion is a quite challenging.
– Using third order co-occurrences of annotator responses.
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Pairwise-cooccureces of the response

• Second order statistics has lower sample complexity compared to any higher order
statistics (by basic concentration theorems).

• Consider the pairwise joint PMF of any two annoator responses,

Rm,`(km, k`) = Pr(Xm = km, X` = k`)

=

K∑
k=1

Pr(Y = k)︸ ︷︷ ︸
d(k)

Pr(Xm = km|Y = k)︸ ︷︷ ︸
Am(km,k)

Pr(X` = k`|Y = k)︸ ︷︷ ︸
A`(k`,k)

.

• In matrix form, Rm,` := AmDA>` , where D = Diag(d), Rm,` ∈ RK×K.

• In practice, if we are given with the annotator responses Xm(fn), Rm,`’s can be
estimated via sample averaging.
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Our Approach

• Consider an annotator m who co-labels the datasamples with annotators
m1, . . . ,mT (m), where T (m) is # of annotators who co-label with m.

• It means, we can construct a matrix Zm as

Zm =
[
Rm,m1,Rm,m2, . . . ,Rm,mT (m)

]
.

• We can reformulate this as

Zm =
[
AmDA>m1

, . . . ,AmDA>T (m)

]
= Am

[
DA>m1

, . . . ,DA>T (m)︸ ︷︷ ︸
H>m

]
∈ RK×KT (m).

• In short, we have to estimate Am from the formulation Zm = AmH
>
m , ∀m.
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Our Approach

• We first normalize the columns of Zm to get Zm = AmH
>
m where H

>
m is row

normalized and Am is column normalized by definition.

• So after normalization,
Hm1 = 1, Hm ≥ 0,

i.e, the rows of Hm lies in the probability simplex ∆K and Zm ∈ conv(Am)
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Our Approach
• Let us assume there exits some rows in Hm such that,

Hm(Λq, :) = IK, Λq = {q1, . . . , qK}.

– known as seperability in Nonnegetive Matrix Factorization [Donoho and Stod-
den, 2003].

• Since Zm = AmH
>
m, then Zm(:, Λq) = AmHm(Λq, :)⇒ Am = Zm(:, Λq).
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Successive Projection Algorithm (SPA)

• Under the seperability assumption, our task boils down to identifyting Λq,
an index selection problem!

• An algebraic algorithm exists which handles index identification known as Succes-
sive Projection Approximation(SPA) [Arora et al., 2013].

• SPA is a Gram-Schmitt-like algorithm, which only consists of norm comparisons
and orthogonal projections.

• We repeat this index identification procedure via SPA for every m and thus all,
Am’s are identified and name our approach MultiSPA.
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Successive Projection Algorithm (SPA)

• Under the seperability assumption, our task boils down to identifyting Λq,
an index selection problem!

• An algebraic algorithm exists which handles index identification known as Succes-
sive Projection Approximation(SPA) [Arora et al., 2013].

• SPA is a Gram-Schmitt-like algorithm, which only consists of norm comparisons
and orthogonal projections.

• We repeat this index identification procedure via SPA for every m and thus all,
Am’s are identified and name our approach MultiSPA.

The algorithm works under the assumption Hm(Λq, :) = IK.
But what does this mean in crowdsourcing?
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A closer look at the assumptions

• Our assumption is Hm(Λq, :) = IK where H>m = D[A>m1
, . . . ,A>T (m)]

• For K = 3, an ideal annotator looks as below

Am of an ideal annotator
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A closer look at the assumptions

• If there exists an ideal annotator Am∗, m
∗ ∈ {m1, . . . ,mT (m)}, such that

Zm = AmD
[
A>m1

, . . .

IK︷ ︸︸ ︷
,A>m∗, . . . ,A

>
T (m)

]︸ ︷︷ ︸
H>m

• This satisfies the condition Hm(Λq, :) = IK and thus Am can be identified.
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A closer look at the assumptions

• Another scenario...

• Consider an annotator who can perfectly identify class k and never confuses with
other classes,

Am of a perfect annotator for class 2
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A closer look at the assumptions

• In this way, if every class has a perfect annotator, then

Zm = AmD
[
A>m1

, . . . ,

e1x
A>me1

, . . . ,

e2x
A>me2

, . . . ,

e3x
A>me3

, . . . ,A>T (m)

]︸ ︷︷ ︸
H>m

Hm(Λq, :) = IK can be satisfied
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A closer look at the assumptions

• Satisfying Hm(Λq, :) = IK may be too ideal.

• In practice, the annotators may not be perfect for any class, but can be reasonably
good for some class. For example, reasonably good annotator for class 2,

• Under such cases, does the proposed method work??
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Identification Theorem

Theorem 1 : Assume that annotators m and t co-label at least S samples ∀t ∈ {m1, . . . ,mT (m)},

and that Ẑm is constructed using R̂m,mT (m)
’s according to Eq. (). Also assume that the

constructed Ẑm satisfies ‖Ẑm(:, l)‖1 ≥ η, ∀l ∈ {1, . . . KT (m)}, where η ∈ (0, 1]. Suppose

that rank(Am) = rank(D) = K for m = 1, . . . ,M , and that for every class index

k ∈ {1, . . . , K}, there exists an annotator mt(k) ∈ {m1, . . . ,mT (m)} such that

Pr(Xmt(k)
= k|Y = k) ≥ (1− ε)

K∑
j=1

Pr(Xmt(k)
= k|Y = j),

where ε ∈ [0, 1]. Then, if ε ≤ O
(
max

(
K−1κ−3(Am),

√
ln(1/δ)(σmax(Am)

√
Sη)−1

))
,

with probability greater than 1− δ, the SPA algorithm can estimate an Âm such that(
min

Π
‖ÂmΠ−Am‖2,∞

)
≤ O

(√
Kκ

2
(Am)max

(
σmax(Am)ε,

√
ln(1/δ)(

√
Sη)

−1
))

where Π ∈ RK×K is a permutation matrix, ‖Y ‖2,∞ = max` ‖Y (:, `)‖2, σmax(Am) is the

largest singular value of Am, and κ(Am) is the condition number of Am.
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Do we favour more annotators?

• Recall the construction of Zm,

Zm =
[
Rm,m1,Rm,m2, . . . ,Rm,mT (m)

]
.

=
[
AmDA>m1

, . . . ,AmDA>T (m)

]
= AmD

[
A>m1

, . . . ,A>T (m)

]︸ ︷︷ ︸
H>m

∈ RK×KT (m).
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Do we favour more annotators?
Theorem 2 :Let ρ > 0, ε > 0, and assume that the rows of Hm are generated within
the (K − 1)-probability simplex uniformly at random. If the number of annotators

satisfies M ≥ Ω
(
ε−2(K−1)

K log
(
K
ρ

))
, then, with probability greater than or equal to

1− ρ, there exist rows of Hm indexed by q1, . . . qK such that

‖Hm(qk, :)− e>k ‖2 ≤ ε, k = 1, . . . ,K.
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MultiSPA - In a Nutshell
• Based on Dawid-Skene model which is simple, yet useful.

• Simple, scalable algorithm, like Gram-Schmidt proce-
dure.

• Enjoys lower sample complexity compared to tensor
based methods.

• Model parameters can be provably identified under cer-
tain assumptions which has practical implications in
crowdsourcing.
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MultiSPA - In a Nutshell
• Based on Dawid-Skene model which is simple, yet useful.

• Simple, scalable algorithm, like Gram-Schmidt proce-
dure.

• Enjoys lower sample complexity compared to tensor
based methods.

• Model parameters can be provably identified under cer-
tain assumptions which has practical implications in
crowdsourcing.

Can we offer stronger identifiability guarantees?
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Identifiability Enhanced Theorem

Theorem 3 : Assume that rank(D) = rank(Am) = K for all m = 1, . . . ,M ,
and that there exist two subsets of the annotator, indexed by P1 and P2, where
P1 ∩ P2 = ∅ and P1 ∪ P2 ⊆ {1, . . . ,M}. Suppose that from P1 and P2 the
following two matrices can be constructed: H(1) = [A>m1

, . . . ,A>m|P1|
]>, H(2) =

[A>`1, . . . ,A
>
`|P2|

]>, where mt ∈ P1 and `j ∈ P2. Furthermore, assume that

i) both H(1) and H(2) are sufficiently scattered ;

ii) all Rmt,`j’s for mt ∈ P1 and `j ∈ P2 are available; and

iii) for every m /∈ P1 ∪ P2 there exists a Rm,r available, where r ∈ P1 ∪ P2.

Then, solving the coupled decomposition problem recovers Am for m = 1, . . . ,M
up to a unified permutation ambiguity matrix.
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Theorem 3 says...

• If we have two annotator groups P1 and P2 such that all the pairwise statistics
across the group are available, then there may exist a construction as below

R =

 Rm1,`1 Rm1,`2 . . . Rm1,`|P2|... ... . . . ...
Rm|P1|,`1

Rm1,`2 . . . Rm|P2|,`|P2|


=

 Am1
...

Am|P1|
.

D[A>`1, . . . ,A
>
`|P2|

] = H(1)D︸ ︷︷ ︸
W

(H(2)︸ ︷︷ ︸
H

)>.

• If the rows of W and H satisfies a certain geometrical property called sufficiently
scattered (SS) condition, then W and H are identifiable upto trivial ambiguity
[Huang et al., 2014].
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Sufficiently scattered W Seperable W

• SS is much easier to satisfy relative to seperability.

– We do not need extremely well trained annotators for each class to satisfy SS.
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Theorem 3 says...

• By solving the below proposed coupled decomposition problem, Am for m =
1, . . . ,M can be estimated

find {Am}Mm=1, D

subject to Rm,` = AmDA>` , ∀m, ` ∈ {1, . . . ,M}

1>Am = 1>, Am ≥ 0, ∀m

1>d = 1, d ≥ 0.
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Does SS condition favour more annotators?

Theorem 4: Let ρ > 0, α2 > ε > 0,, and assume that the rows of H(1) and H(2)

are generated from RK uniformly at random. If the number of annotators satisfies

M ≥ Ω
(

(K−1)2

Kα2(K−2)ε2
log
(
K(K−1)

ρ

))
, where α = 1 for K = 2, α = 2/3 for K = 3

and α = 1/2 for K > 3, then with probability greater than or equal to 1− ρ, H(1)

and H(2) are ε-sufficiently scattered.

Figure 1: (ε-sufficiently scatterd)
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Does SS condition favour more annotators?

Theorem 4: Let ρ > 0, α2 > ε > 0,, and assume that the rows of H(1) and H(2)

are generated from RK uniformly at random. If the number of annotators satisfies

M ≥ Ω
(

(K−1)2

Kα2(K−2)ε2
log
(
K(K−1)

ρ

))
, where α = 1 for K = 2, α = 2/3 for K = 3

and α = 1/2 for K > 3, then with probability greater than or equal to 1− ρ, H(1)

and H(2) are ε-sufficiently scattered.

Figure 2: (ε-sufficiently scatterd)
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Alternating Optimization KL Algorithm
• Kullback-Leibler (KL) divergence is the natural distance measure under proaba-

bility measures. Let R and R̂ are two probability distribution matrices, then

DKL(R||R̂) = −
∑
i,j

Rijlog
Rij

R̂ij

(1)

• So we use KL divergence in our fitting probelm

minimize
{Am}Mm=1, D

∑
m,`

DKL

(
Rm,`||AmDA>`

)
subject to 1>Am = 1>, Am ≥ 0, ∀m

1>d = 1, d ≥ 0,

• It is a non-convex optimization. So, we use alternating optimization (AO)
approach, by cyclically updating each parameters, solving the convex subproblems
using mirror descent.
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Experiment setup & Results

• UCI datasets (https://archive.ics.uci.edu/ml/datasets.html) are con-
sidered

• For each dataset, we use different MATLAB classifiers to annotate the data
samples

Table 1: Details of UCI Datasets.

UCI dataset name # classes # items # annotators
Adult 2 7017 10
Mushroom 2 6358 10
Nursery 4 3575 10
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Experiment setup & Results

• For training, we use 20% of the samples to act as training data

• In practice, not all samples are labeled by an annotator

• To simulate such a scenario, each of the trained algorithms is allowed to label
a data sample with probability p < 1. A smaller p means a more challenging
scenario

• We use MAP estimator to predict the labels, e.g,

ŷMAP = arg max
k∈[K]

[
log(d(k)) +

M∑
m=1

log
(
Am(km, k)

)]

• We compare the performance with different baselines.
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Results

Table 2: Classification Error (%) on UCI Datasets

Nursery Mushroom Adult

Algorithms p = 1 p = 0.5 p = 0.2 p = 1 p = 0.5 p = 0.2 p = 1 p = 0.5 p = 0.2

MultiSPA 2.83 4.54 17.96 0.02 0.293 6.35 15.71 16.05 17.66

MultiSPA-KL 2.72 4.26 13.06 0.00 0.152 5.89 15.66 15.98 17.63

MultiSPA-D&S 2.82 4.44 13.39 0.00 0.194 6.17 15.74 16.29 23.88

Spectral-D&S 3.14 37.2 44.29 0.00 0.198 6.17 15.72 16.31 23.97

TensorADMM 17.97 7.26 19.78 0.06 0.237 6.18 15.72 16.05 25.08

MV-D&S 2.92 66.48 66.61 0.00 47.99 48.63 15.76 75.21 75.13

Minmax-entropy 3.63 26.31 11.09 0.00 0.163 8.14 16.11 16.92 15.64

EigenRatio N/A N/A N/A 0.06 0.329 5.97 15.84 16.28 17.69

KOS 4.21 6.07 13.48 0.06 0.576 6.42 17.19 24.97 38.29

Ghosh-SVD N/A N/A N/A 0.06 0.329 5.97 15.84 16.28 17.71

Majority Voting 2.94 4.83 19.75 0.14 0.566 6.57 15.75 16.21 20.57

Single Best 3.94 N/A N/A 0.00 N/A N/A 16.23 N/A N/A

Single Worst 15.65 N/A N/A 7.22 N/A N/A 19.27 N/A N/A
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Experiment setup and Results

• The datasets annotated by Amazon Mechanical Turk (https://www.mturk.com)
(AMT) workers are used here

Table 3: AMT Dataset description.

Dataset # classes # items # annotators # annotator labels
Bird 2 108 30 3240
RTE 2 800 164 8,000
TREC 2 19,033 762 88,385
Dog 4 807 52 7,354
Web 5 2,665 177 15,567

• We use MAP estimator to predict the labels, e.g,

ŷMAP = arg max
k∈[K]

[
log(d(k)) +

M∑
m=1

log
(
Am(km, k)

)]
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Experiment setup and Results

Table 4: Classification Error (%) and Run-time (sec) : AMT Datasets

Algorithms TREC Bluebird RTE
(%) Error (sec) Time (%) Error (sec) Time (%) Error (sec) Time

MultiSPA 31.47 50.68 13.88 0.07 8.75 0.28
MultiSPA-KL 29.23 536.89 11.11 1.94 7.12 17.06
MultiSPA-D&S 29.84 53.14 12.03 0.09 7.12 0.32
Spectral-D&S 29.58 919.98 12.03 1.97 7.12 6.40
TensorADMM N/A N/A 12.03 2.74 N/A N/A
MV-D&S 30.02 3.20 12.03 0.02 7.25 0.07
Minmax-entropy 91.61 352.36 8.33 3.43 7.50 9.10
EigenRatio 43.95 1.48 27.77 0.02 9.01 0.03
KOS 51.95 9.98 11.11 0.01 39.75 0.03
GhoshSVD 43.03 11.62 27.77 0.01 49.12 0.03
Majority Voting 34.85 N/A 21.29 N/A 10.31 N/A
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Experiment setup and Results

Table 5: Classification Error (%) and Run-time (sec) : AMT Datasets

Algorithms Web Dog
(%) Error (sec) Time (%) Error (sec) Time

MultiSPA 15.22 0.54 17.09 0.07
MultiSPA-KL 14.58 12.34 15.48 15.88
MultiSPA-D&S 15.11 0.84 16.11 0.12
Spectral-D&S 16.88 179.92 17.84 51.16
TensorADMM N/A N/A 17.96 603.93
MV-D&S 16.02 0.28 15.86 0.04
Minmax-entropy 11.51 26.61 16.23 7.22
EigenRatio N/A N/A N/A N/A
KOS 42.93 0.31 31.84 0.13
GhoshSVD N/A N/A N/A N/A
Majority Voting 26.93 N/A 17.91 N/A
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Conclusion & Future direction

• We proposed a second order statistics based approach for identifiability to the
Dawid-Skene model for crowdsourcing

• The proposed multiSPA algorithm is simple, light weight and need lower
sample complexity compared to existing tensor based methods

• We also proposed an approach with enhanced identifiabity and provided an
alternating optimization based algorithm

• We supported our theoretical analysis using experimental results.

• Potential future works:

– Analyze the dependent annotator and dependent data scenario.
– Faster algorithm for the proposed coupled decomposition problem.
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Synthetic Data Experiments

• No of annotators M = 25, no of classes K = 3, no of items N = 10000.

• Case 1: A randomly chosen annotator is assigned identity matrix as confusion
matrix.

Table 6: Average MSE of the confusion matrices Am for case 1.

Algorithms p = 0.2 p = 0.3 p = 0.5 p = 1
MutliSPA 0.0184 0.0083 0.0063 0.0034
MultiSPA-KL 0.0019 0.0009 0.0004 1.73E-04
Spectral D&S 0.0320 0.0112 0.0448 1.74E-04
TensorADMM 0.0026 0.0011 0.0005 1.88E-04
MV-D&S – – 0.0173 1.84E-04

Shahana Ibrahim Nov. 2019 EECS, Oregon State University 51



Synthetic Data Experiments

• No of annotators M = 25, no of classes K = 3, no of items N = 10000.

• Case 2: A randomly chosen annotator is assigned a diagonally dominant confusion
matrix.

Table 7: Average MSE of the confusion matrices Am for case 2.

Algorithms p = 0.2 p = 0.3 p = 0.5 p = 1
MutliSPA 0.0229 0.0188 0.0115 0.0102
MultiSPA-KL 0.0029 0.0014 0.0005 1.67E-04
Spectral D&S 0.0348 0.0265 0.0391 1.67E-04
TensorADMM 0.0031 0.0016 0.0006 1.93E-04
MV-D&S – – 0.0028 5.88E-04
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Synthetic Data Experiments

Table 8: Classification Error(%) & Averge run-time when d = [13,
1
3,

1
3]>

Algorithms p = 0.2 p = 0.3 p = 0.5 Run-time(sec)
MultiSPA 37.24 26.39 19.21 0.049
MultiSPA-KL 31.71 21.10 12.79 18.07
MultiSPA-D&S 31.95 21.11 12.80 0.069
Spectral-D&S 46.37 23.92 12.89 27.17
TensorADMM 32.16 21.34 12.91 56.09
MV-D&S 66.91 57.92 13.09 0.096
Minmax-entropy 62.83 65.50 67.31 200.91
KOS 71.47 61.05 13.12 5.653
Majority Voting 67.57 68.37 71.39 –
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Synthetic Data Experiments

Table 9: Classification Error(%) & Averge run-time when d = [16,
2
3,

1
6]>

Algorithms p = 0.2 p = 0.3 p = 0.5 Run-time(sec)
MultiSPA 30.75 21.29 13.67 0.105
MultiSPA-KL 23.19 16.62 10.13 18.93
MultiSPA-D&S 40.12 32.1 21.46 0.122
Spectral-D&S 56.17 49.41 39.17 28.01
TensorADMM 34.17 25.53 11.97 152.76
MV-D&S 83.14 83.15 32.98 0.090
Minmax-entropy 83.04 63.08 74.29 232.82
KOS 70.79 67.55 78.00 6.19
Majority Voting 65.37 65.57 66.06 –
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Synthetic Data Experiments

10 15 20 25 30

No of Annotators (M) 

10-3
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E
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MultiSPA-KL

Figure 3: MSE of the confusion matrices for various values of M
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UCI Dataset Experiments - Run-time performance

Table 10: Average runtime (sec) for UCI datset experiments.

Algorithms Nursery Mushroom Adult
MultiSPA 0.021 0.012 0.018
MultiSPA-KL 1.112 0.663 0.948
MultiSPA-D&S 0.035 0.027 0.027
Spectral-D&S 10.09 0.496 0.512
TensorADMM 5.811 0.743 4.234
MV-D&S 0.009 0.007 0.008
Minmax-entropy 19.94 2.304 6.959
EigenRatio – 0.005 0.007
KOS 0.768 0.085 0.118
Ghosh-SVD – 0.081 0.115
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Resolving Permutation ambiguity

• SPA-estimated Âm is up to column permutation, even if there is no noise, i.e.,
Âm = AmΠm, Πm is the permutation matrix.

• A very practical heuristic can be used to resolve permutation ambiguity - if one
believes that all the annotators are reasonably trained, then we can rearrange the
columns of Âm so that it is diagonal dominant

• Once Am are identified, d can be estimated by D = A−1m Rm,`(A
>
` )−1 using any

m, l ∈ {1, . . . ,M}
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Experiment setup and Results

• The datasets annotated by Amazon Mechanical Turk (https://www.mturk.com)
(AMT) workers are used here

Table 11: AMT Dataset Description

Dataset name # classes # items # annotators
Bluebird 2 108 39

RTE 2 800 20
Dog 4 807 20
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Experiment setup and Results

Classification Error (%) : AMT Datasets

Algorithms RTE Dog Bluebird
MultiSPA 17.87 24.9 12.96
MultiSPA-KL 17.37 24.89 11.11
Spectral-D&S 17.75 25.52 10.19
TensorADMM 17.50 40.64 10.19
MV-D&S 18.75 21.32 11.11
Majority Voting 33.62 26.59 24.07
KOS 40.12 41.38 11.11
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Successive Projection Algorithm (SPA)

• An algebraic algorithm exists which handles index identification known as Succes-
sive Projection Approximation(SPA) [Arora et al., 2013].

• Consider a column in Zm, then,

∥∥Zm(:, q)
∥∥
2

=

∥∥∥∥∥
K∑
k=1

Am(:, k)Hm(q, k)

∥∥∥∥∥
2

, (data model)

≤
K∑
k=1

∥∥Am(:, k)Hm(q, k)
∥∥
2
, (triangular inequality)

=

K∑
k=1

Hm(q, k) ‖Am(:, k)‖2 , (non-negetivity of Hm)

≤ max
k=1,...,K

‖Am(:, k)‖2 , (rows of Hm sum to one )
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Successive Projection Algorithm (SPA)

• By this inequality, the column index corresponding to first vertex, q̂1 is identified
as,

q̂1 = arg max
q

∥∥Zm(:, q)
∥∥2
2
. (2)

• Then all the remaining columns of Zm are projected to the orthogonal complement
of the selected column, we repeat the vertex identification for K − 1 times.

• We repeat this index identification procedure for every m and thus all, Am’s are
identified and name our approach MultiSPA.
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Successive Projection Algorithm (SPA)

• By this inequality, the column index corresponding to first vertex, q̂1 is identified
as,

q̂1 = arg max
q

∥∥Zm(:, q)
∥∥2
2
. (3)

• Then all the remaining columns of Zm are projected to the orthogonal complement
of the selected column, we repeat the vertex identification for K − 1 times.

• We repeat this index identification procedure for every m, thus all Am’s are
identified and name our approach MultiSPA.

The algorithm works under the assumption Hm(Λq, :) = IK.
But what does this mean in crowdsourcing?
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