Crowdsourcing via Pairwise Co-occurrences: Identifiability and Algorithms

Shahana Ibrahim
Joint Work with Xiao Fu, Nikos Kargas, Kejun Huang
School of Electrical Engineering and Computer Science, Oregon State University

Outline

- What is Crowdsourcing?
- Problem modeling.
- Existing approaches.
- Proposed method and its implications.
- Experimental results.

- Conclusion.

The era of big data...

- Tremendous amount of data is being generated every day.
- Many supervised learning tasks, e.g. tasks in computer vision, natural language processing, speech processing heavily rely on labeled data.
- The volume of labeled data in deep learning datasets has grown to millions (e.g. ImageNet, MS.COCO).

The era of big data...

- One of the key performance boosters of the deep learning algorithms is labeled data.

1

- But labeling is not a trivial task!!

[^0]
Crowdsourcing Paradigm

2

[^1]
Crowdsourcing Dataflow

What are the challenges?

- A natural thought for a crowdsourcing algorithm is majority voting.
- Majority voting may not be always effective.
- Not all annotators are equally reliable.
- Each annotator may not be labeling all the data due to limited pay, time or lack of knowledge.

We need effective integrating algorithms for annotator responses.

Dawid-Skene Model in Crowdsourcing Problem

- One of the simplest model in crowdsourcing, but elegent and very effective.
- Crowdsourcing problem was associated to the Naive Bayes Model by [Dawid and Skene, 1979].

Dawid-Skene Model in Crowdsourcing Problem

- Under Naive Bayes Model, the joint probability of annotator responses is given by,

$$
\operatorname{Pr}\left(X_{1}=k_{1}, \ldots, X_{M}=k_{M}\right)=\sum_{k=1}^{K} \operatorname{Pr}(Y=k) \prod_{m=1}^{M} \operatorname{Pr}\left(X_{m}=k_{m} \mid Y=k\right) .
$$

- We can define the confusion matrix $\boldsymbol{A}_{m} \in \mathbb{R}^{K \times K}$ for each annotator and the prior probability vector $d \in \mathbb{R}^{K}$ such that,

$$
\begin{aligned}
\boldsymbol{A}_{m}\left(k_{m}, k\right) & :=\operatorname{Pr}\left(X_{m}=k_{m} \mid Y=k\right), \\
\boldsymbol{d}(k) & :=\operatorname{Pr}(Y=k)
\end{aligned}
$$

Confusion Matrix

\boldsymbol{A}_{m} of an annotator, $\mathrm{K}=3$

- Note that columns of \boldsymbol{A}_{m} and \boldsymbol{d} are probability measures, so it should be nonnegetive and should sum to 1 .
- So the goal is to estimate \boldsymbol{A}_{m} for $m=1, \ldots, M$ and d.

Prior Art

- Dawid-Skene Model [Dawid and Skene, 1979] :
- Proposed the Naive Bayesian model for crowd sourcing problem.
- Based on ML estimation using expectation maximization (EM).
- Widely used, but a non-convex optimization, model identification and convergence properties are unclear.
- Spectral Method [Zhang et al., 2014] :
- Model identification using orthogonal and symmetric tensor decomposition.
- Provides an initialization to Dawid-Skene estimator.
- Provably effective, but using third-order co-occurrences of the annotator responses, thus suffers higher sample complexity.
- Tensor CPD method [Traganitis et al., 2018] :
- Using Canonical Polyadic Tensor decmposition (CPD) technique.
- Established the identifiability, but not scalable since general tensor decomposition is a quite challenging.
- Using third order co-occurrences of annotator responses.

Prior Art

- Dawid-Skene Model [Dawid and Skene, 1979] :
- Proposed the Naive Bayesian model for crowd sourcing problem.
- Based on ML estimation using expectation maximization (EM).
- Widely used, but a non-convex optimization, model identification and convergence properties are unclear.
- Spectral Method [Zhang et al., 2014] :
- Model identification using orthogonal and symmetric tensor decomposition.
- Provides an initialization to Dawid-Skene estimator.
- Provably effective, but using third-order co-occurrences of the annotator responses, thus suffers higher sample complexity.
- Tensor CPD method [Traganitis et al., 2018] :
- Using Canonical Polyadic Tensor decmposition (CPD) technique.
- Established the identifiability, but not scalable since general tensor decomposition is a quite challenging.
- Using third order co-occurrences of annotator responses.

Pairwise-cooccureces of the response

- Second order statistics has lower sample complexity compared to any higher order statistics (by basic concentration theorems).
- Consider the pairwise joint PMF of any two annoator responses,

$$
\begin{aligned}
\boldsymbol{R}_{m, \ell}\left(k_{m}, k_{\ell}\right) & =\operatorname{Pr}\left(X_{m}=k_{m}, X_{\ell}=k_{\ell}\right) \\
& =\sum_{k=1}^{K} \underbrace{\operatorname{Pr}(Y=k)}_{\boldsymbol{d}(k)} \underbrace{\operatorname{Pr}\left(X_{m}=k_{m} \mid Y=k\right)}_{\boldsymbol{A}_{m}\left(k_{m}, k\right)} \underbrace{\operatorname{Pr}\left(X_{\ell}=k_{\ell} \mid Y=k\right)}_{\boldsymbol{A}_{\ell}\left(k_{\ell}, k\right)} .
\end{aligned}
$$

- In matrix form, $\boldsymbol{R}_{m, \ell}:=\boldsymbol{A}_{m} \boldsymbol{D} \boldsymbol{A}_{\ell}^{\top}$, where $\boldsymbol{D}=\operatorname{Diag}(\boldsymbol{d}), \boldsymbol{R}_{m, \ell} \in \mathbb{R}^{K \times K}$.
- In practice, if we are given with the annotator responses $X_{m}\left(\boldsymbol{f}_{n}\right), \boldsymbol{R}_{m, \ell}$'s can be estimated via sample averaging.

Our Approach

- Consider an annotator m who co-labels the datasamples with annotators $m_{1}, \ldots, m_{T(m)}$, where $T(m)$ is \# of annotators who co-label with m.
- It means, we can construct a matrix \boldsymbol{Z}_{m} as

$$
\boldsymbol{Z}_{m}=\left[\boldsymbol{R}_{m, m_{1}}, \boldsymbol{R}_{m, m_{2}}, \ldots, \boldsymbol{R}_{m, m_{T(m)}}\right]
$$

- We can reformulate this as

$$
\begin{aligned}
\boldsymbol{Z}_{m} & =\left[\boldsymbol{A}_{m} \boldsymbol{D} \boldsymbol{A}_{m_{1}}^{\top}, \ldots, \boldsymbol{A}_{m} \boldsymbol{D} \boldsymbol{A}_{T(m)}^{\top}\right] \\
& =\boldsymbol{A}_{m}[\underbrace{\boldsymbol{D} \boldsymbol{A}_{m_{1}}^{\top}, \ldots, \boldsymbol{D} \boldsymbol{A}_{T(m)}^{\top}}_{\boldsymbol{H}_{m}^{\top}}] \in \mathbb{R}^{K \times K T(m)} .
\end{aligned}
$$

- In short, we have to estimate \boldsymbol{A}_{m} from the formulation $\boldsymbol{Z}_{m}=\boldsymbol{A}_{m} \boldsymbol{H}_{m}^{\top}, \forall m$.

Our Approach

- We first normalize the columns of \boldsymbol{Z}_{m} to get $\overline{\boldsymbol{Z}}_{m}=\boldsymbol{A}_{m} \overline{\boldsymbol{H}}_{m}^{\top}$ where $\overline{\boldsymbol{H}}_{m}^{\top}$ is row normalized and \boldsymbol{A}_{m} is column normalized by definition.
- So after normalization,

$$
\overline{\boldsymbol{H}}_{m} \mathbf{1}=\mathbf{1}, \overline{\boldsymbol{H}}_{m} \geq \mathbf{0},
$$

i.e, the rows of $\overline{\boldsymbol{H}}_{m}$ lies in the probability simplex Δ_{K} and $\overline{\boldsymbol{Z}}_{m} \in \operatorname{conv}\left(\boldsymbol{A}_{m}\right)$

Our Approach

- Let us assume there exits some rows in $\overline{\boldsymbol{H}}_{m}$ such that,

$$
\overline{\boldsymbol{H}}_{m}\left(\Lambda_{q},:\right)=\boldsymbol{I}_{K}, \Lambda_{q}=\left\{q_{1}, \ldots, q_{K}\right\} .
$$

- known as seperability in Nonnegetive Matrix Factorization [Donoho and Stodden, 2003].
- Since $\overline{\boldsymbol{Z}}_{m}=\boldsymbol{A}_{m} \overline{\boldsymbol{H}}_{m}^{\top}$, then $\overline{\boldsymbol{Z}}_{m}\left(:, \Lambda_{q}\right)=\boldsymbol{A}_{m} \overline{\boldsymbol{H}}_{m}\left(\Lambda_{q},:\right) \Rightarrow \boldsymbol{A}_{m}=\overline{\boldsymbol{Z}}_{m}\left(:, \Lambda_{q}\right)$.

Successive Projection Algorithm (SPA)

- Under the seperability assumption, our task boils down to identifyting Λ_{q}, an index selection problem!
- An algebraic algorithm exists which handles index identification known as Successive Projection Approximation(SPA) [Arora et al., 2013].
- SPA is a Gram-Schmitt-like algorithm, which only consists of norm comparisons and orthogonal projections.
- We repeat this index identification procedure via SPA for every m and thus all, \boldsymbol{A}_{m} 's are identified and name our approach MultiSPA.

Successive Projection Algorithm (SPA)

- Under the seperability assumption, our task boils down to identifyting Λ_{q}, an index selection problem!
- An algebraic algorithm exists which handles index identification known as Successive Projection Approximation(SPA) [Arora et al., 2013].
- SPA is a Gram-Schmitt-like algorithm, which only consists of norm comparisons and orthogonal projections.
- We repeat this index identification procedure via SPA for every m and thus all, \boldsymbol{A}_{m} 's are identified and name our approach MultiSPA.

The algorithm works under the assumption $\overline{\boldsymbol{H}}_{m}\left(\Lambda_{q},:\right)=\boldsymbol{I}_{K}$.
But what does this mean in crowdsourcing?

A closer look at the assumptions

- Our assumption is $\overline{\boldsymbol{H}}_{m}\left(\Lambda_{q},:\right)=\boldsymbol{I}_{K}$ where $\boldsymbol{H}_{m}^{\top}=\boldsymbol{D}\left[\boldsymbol{A}_{m_{1}}^{\top}, \ldots, \boldsymbol{A}_{T(m)}^{\top}\right]$
- For $K=3$, an ideal annotator looks as below

\boldsymbol{A}_{m} of an ideal annotator

A closer look at the assumptions

- If there exists an ideal annotator $\boldsymbol{A}_{m *}, m^{*} \in\left\{m_{1}, \ldots, m_{T(m)}\right\}$, such that

- This satisfies the condition $\overline{\boldsymbol{H}}_{m}\left(\Lambda_{q},:\right)=\boldsymbol{I}_{K}$ and thus \boldsymbol{A}_{m} can be identified.

A closer look at the assumptions

- Another scenario...
- Consider an annotator who can perfectly identify class k and never confuses with other classes,

\boldsymbol{A}_{m} of a perfect annotator for class 2

A closer look at the assumptions

- In this way, if every class has a perfect annotator, then

$$
\boldsymbol{Z}_{m}=\boldsymbol{A}_{m} \underbrace{\boldsymbol{D}\left[\boldsymbol{A}_{m_{1}}^{\top}, \ldots, \boldsymbol{A}_{m_{e 1}}^{\top}, \ldots, \boldsymbol{A}_{m_{e 2}}^{\top}, \ldots, \boldsymbol{A}_{m_{e 3}}^{\top}, \ldots, \boldsymbol{A}_{T(m)}^{\top}\right]}_{\boldsymbol{H}_{m}^{\top}}
$$

$\overline{\boldsymbol{H}}_{m}\left(\Lambda_{q},:\right)=\boldsymbol{I}_{K}$ can be satisfied

A closer look at the assumptions

- Satisfying $\overline{\boldsymbol{H}}_{m}\left(\Lambda_{q},:\right)=\boldsymbol{I}_{K}$ may be too ideal.
- In practice, the annotators may not be perfect for any class, but can be reasonably good for some class. For example, reasonably good annotator for class 2,

- Under such cases, does the proposed method work??

Identification Theorem

Theorem 1 : Assume that annotators m and t co-label at least S samples $\forall t \in\left\{m_{1}, \ldots, m_{T(m)}\right\}$, and that $\widehat{\boldsymbol{Z}}_{m}$ is constructed using $\widehat{\boldsymbol{R}}_{m, m_{T(m)}}$'s according to Eq. (). Also assume that the constructed $\widehat{\boldsymbol{Z}}_{m}$ satisfies $\left\|\widehat{\boldsymbol{Z}}_{m}(:, l)\right\|_{1} \geq \eta, \forall l \in\{1, \ldots K T(m)\}$, where $\eta \in(0,1]$. Suppose that $\operatorname{rank}\left(\boldsymbol{A}_{m}\right)=\operatorname{rank}(\boldsymbol{D})=K$ for $m=1, \ldots, M$, and that for every class index $k \in\{1, \ldots, K\}$, there exists an annotator $m_{t(k)} \in\left\{m_{1}, \ldots, m_{T(m)}\right\}$ such that

$$
\operatorname{Pr}\left(X_{m_{t(k)}}=k \mid Y=k\right) \geq(1-\epsilon) \sum_{j=1}^{K} \operatorname{Pr}\left(X_{m_{t(k)}}=k \mid Y=j\right)
$$

where $\epsilon \in[0,1]$. Then, if $\epsilon \leq \mathcal{O}\left(\max \left(K^{-1} \kappa^{-3}\left(\boldsymbol{A}_{m}\right), \sqrt{\ln (1 / \delta)}\left(\sigma_{\max }\left(\boldsymbol{A}_{m}\right) \sqrt{S} \eta\right)^{-1}\right)\right)$, with probability greater than $1-\delta$, the SPA algorithm can estimate an $\widehat{\boldsymbol{A}}_{m}$ such that

$$
\left(\min _{\boldsymbol{\Pi}}\left\|\widehat{\boldsymbol{A}}_{m} \boldsymbol{\Pi}-\boldsymbol{A}_{m}\right\|_{2, \infty}\right) \leq \mathcal{O}\left(\sqrt{K} \kappa^{2}\left(\boldsymbol{A}_{m}\right) \max \left(\sigma_{\max }\left(\boldsymbol{A}_{m}\right) \epsilon, \sqrt{\ln (1 / \delta)}(\sqrt{S} \eta)^{-1}\right)\right)
$$

where $\Pi \in \mathbb{R}^{K \times K}$ is a permutation matrix, $\|\boldsymbol{Y}\|_{2, \infty}=\max _{\ell}\|\boldsymbol{Y}(:, \ell)\|_{2}, \sigma_{\max }\left(\boldsymbol{A}_{m}\right)$ is the largest singular value of \boldsymbol{A}_{m}, and $\kappa\left(\boldsymbol{A}_{m}\right)$ is the condition number of \boldsymbol{A}_{m}.

Identification Theorem

Theorem 1 : Assume that annotators m and t co-label at least S samples $\forall t \in\left\{m_{1}, \ldots, m_{T(m)}\right\}$, and that $\widehat{\boldsymbol{Z}}_{m}$ is constructed using $\widehat{\boldsymbol{R}}_{m, m_{T(m)}}$'s according to Eq. (). Also assume that the constructed $\widehat{\boldsymbol{Z}}_{m}$ satisfies $\left\|\widehat{\boldsymbol{Z}}_{m}(:, l)\right\|_{1} \geq \eta, \forall l \in\{1, \ldots K T(m)\}$, where $\eta \in(0,1]$. Suppose that $\operatorname{rank}\left(\boldsymbol{A}_{m}\right)=\operatorname{rank}(\boldsymbol{D})=K$ for $m=1, \ldots, M$, and that for every class index $k \in\{1, \ldots, K\}$, there exists an annotator $m_{t(k)} \in\left\{m_{1}, \ldots, m_{T(m)}\right\}$ such that

$$
\operatorname{Pr}\left(X_{m_{t(k)}}=k \mid Y=k\right) \geq(1-\epsilon) \sum_{j=1}^{K} \operatorname{Pr}\left(X_{m_{t(k)}}=k \mid Y=j\right),
$$

where $\epsilon \in[0,1]$. Then, if $\epsilon \leq \mathcal{O}\left(\max \left(K^{-1} \kappa^{-3}\left(\boldsymbol{A}_{m}\right), \sqrt{\ln (1 / \delta)}\left(\sigma_{\max }\left(\boldsymbol{A}_{m}\right) \sqrt{S} \eta\right)^{-1}\right)\right)$, with probability greater than $1-\delta$, the SPA algorithm can estimate an $\widehat{\boldsymbol{A}}_{m}$ such that

$$
\left(\min _{\boldsymbol{\Pi}}\left\|\widehat{\boldsymbol{A}}_{m} \boldsymbol{\Pi}-\boldsymbol{A}_{m}\right\|_{2, \infty}\right) \leq \mathcal{O}\left(\sqrt{K} \kappa^{2}\left(\boldsymbol{A}_{m}\right) \max \left(\sigma_{\max }\left(\boldsymbol{A}_{m}\right) \epsilon, \sqrt{\ln (1 / \delta)}(\sqrt{S} \eta)^{-1}\right)\right)
$$

where $\Pi \in \mathbb{R}^{K \times K}$ is a permutation matrix, $\|\boldsymbol{Y}\|_{2, \infty}=\max _{\ell}\|\boldsymbol{Y}(:, \ell)\|_{2}, \sigma_{\max }\left(\boldsymbol{A}_{m}\right)$ is the largest singular value of \boldsymbol{A}_{m}, and $\kappa\left(\boldsymbol{A}_{m}\right)$ is the condition number of \boldsymbol{A}_{m}.

Identification Theorem

Theorem 1 : Assume that annotators m and t co-label at least S samples $\forall t \in\left\{m_{1}, \ldots, m_{T(m)}\right\}$, and that $\widehat{\boldsymbol{Z}}_{m}$ is constructed using $\widehat{\boldsymbol{R}}_{m, m_{T(m)}}$'s according to Eq. (). Also assume that the constructed $\widehat{\boldsymbol{Z}}_{m}$ satisfies $\left\|\widehat{\boldsymbol{Z}}_{m}(:, l)\right\|_{1} \geq \eta, \forall l \in\{1, \ldots K T(m)\}$, where $\eta \in(0,1]$. Suppose that $\operatorname{rank}\left(\boldsymbol{A}_{m}\right)=\operatorname{rank}(\boldsymbol{D})=K$ for $m=1, \ldots, M$, and that for every class index $k \in\{1, \ldots, K\}$, there exists an annotator $m_{t(k)} \in\left\{m_{1}, \ldots, m_{T(m)}\right\}$ such that

$$
\operatorname{Pr}\left(X_{m_{t(k)}}=k \mid Y=k\right) \geq(1-\epsilon) \sum_{j=1}^{K} \operatorname{Pr}\left(X_{m_{t(k)}}=k \mid Y=j\right),
$$

where $\epsilon \in[0,1]$. Then, if $\epsilon \leq \mathcal{O}\left(\max \left(K^{-1} \kappa^{-3}\left(\boldsymbol{A}_{m}\right), \sqrt{\ln (1 / \delta)}\left(\sigma_{\max }\left(\boldsymbol{A}_{m}\right) \sqrt{S} \eta\right)^{-1}\right)\right)$, with probability greater than $1-\delta$, the SPA algorithm can estimate an $\widehat{\boldsymbol{A}}_{m}$ such that

$$
\left(\min _{\Pi}\left\|\widehat{\boldsymbol{A}}_{m} \boldsymbol{\Pi}-\boldsymbol{A}_{m}\right\|_{2, \infty}\right) \leq \mathcal{O}\left(\sqrt{K} \kappa^{2}\left(\boldsymbol{A}_{m}\right) \max \left(\sigma_{\max }\left(\boldsymbol{A}_{m}\right) \epsilon, \sqrt{\ln (1 / \delta)}(\sqrt{S} \eta)^{-1}\right)\right)
$$

where $\Pi \in \mathbb{R}^{K \times K}$ is a permutation matrix, $\|\boldsymbol{Y}\|_{2, \infty}=\max _{\ell}\|\boldsymbol{Y}(:, \ell)\|_{2}, \sigma_{\max }\left(\boldsymbol{A}_{m}\right)$ is the largest singular value of \boldsymbol{A}_{m}, and $\kappa\left(\boldsymbol{A}_{m}\right)$ is the condition number of \boldsymbol{A}_{m}.

Do we favour more annotators?

- Recall the construction of \boldsymbol{Z}_{m},

$$
\begin{aligned}
\boldsymbol{Z}_{m} & =\left[\boldsymbol{R}_{m, m_{1}}, \boldsymbol{R}_{m, m_{2}}, \ldots, \boldsymbol{R}_{m, m_{T(m)}}\right] \\
& =\left[\boldsymbol{A}_{m} \boldsymbol{D} \boldsymbol{A}_{m_{1}}^{\top}, \ldots, \boldsymbol{A}_{m} \boldsymbol{D} \boldsymbol{A}_{T(m)}^{\top}\right] \\
& =\boldsymbol{A}_{m} \underbrace{\boldsymbol{D}\left[\boldsymbol{A}_{m_{1}}^{\top}, \ldots, \boldsymbol{A}_{T(m)}^{\top}\right]}_{\boldsymbol{H}_{m}^{\top}} \in \mathbb{R}^{K \times K T(m)} .
\end{aligned}
$$

Do we favour more annotators?

Theorem 2 :Let $\rho>0, \varepsilon>0$, and assume that the rows of $\overline{\boldsymbol{H}}_{m}$ are generated within the $(K-1)$-probability simplex uniformly at random. If the number of annotators satisfies $M \geq \Omega\left(\frac{\varepsilon^{-2(K-1)}}{K} \log \left(\frac{K}{\rho}\right)\right)$, then, with probability greater than or equal to $1-\rho$, there exist rows of $\overline{\boldsymbol{H}}_{m}$ indexed by $q_{1}, \ldots q_{K}$ such that

$$
\left\|\overline{\boldsymbol{H}}_{m}\left(q_{k},:\right)-\boldsymbol{e}_{k}^{\top}\right\|_{2} \leq \varepsilon, k=1, \ldots, K
$$

Do we favour more annotators?

Theorem 2 :Let $\rho>0, \varepsilon>0$, and assume that the rows of $\overline{\boldsymbol{H}}_{m}$ are generated within the $(K-1)$-probability simplex uniformly at random. If the number of annotators satisfies $M \geq \Omega\left(\frac{\varepsilon^{-2(K-1)}}{K} \log \left(\frac{K}{\rho}\right)\right)$, then, with probability greater than or equal to $1-\rho$, there exist rows of $\overline{\boldsymbol{H}}_{m}$ indexed by $q_{1}, \ldots q_{K}$ such that

$$
\left\|\overline{\boldsymbol{H}}_{m}\left(q_{k},:\right)-\boldsymbol{e}_{k}^{\top}\right\|_{2} \leq \varepsilon, k=1, \ldots, K
$$

MultiSPA - In a Nutshell

- Based on Dawid-Skene model which is simple, yet useful.
- Simple, scalable algorithm, like Gram-Schmidt procedure.
- Enjoys lower sample complexity compared to tensor based methods.
- Model parameters can be provably identified under cer-
 tain assumptions which has practical implications in crowdsourcing.

MultiSPA - In a Nutshell

- Based on Dawid-Skene model which is simple, yet useful.
- Simple, scalable algorithm, like Gram-Schmidt procedure.
- Enjoys lower sample complexity compared to tensor based methods.
- Model parameters can be provably identified under cer-
 tain assumptions which has practical implications in crowdsourcing.

Can we offer stronger identifiability guarantees?

Identifiability Enhanced Theorem

Theorem 3: Assume that $\operatorname{rank}(\boldsymbol{D})=\operatorname{rank}\left(\boldsymbol{A}_{m}\right)=K$ for all $m=1, \ldots, M$, and that there exist two subsets of the annotator, indexed by \mathcal{P}_{1} and \mathcal{P}_{2}, where $\mathcal{P}_{1} \cap \mathcal{P}_{2}=\emptyset$ and $\mathcal{P}_{1} \cup \mathcal{P}_{2} \subseteq\{1, \ldots, M\}$. Suppose that from \mathcal{P}_{1} and \mathcal{P}_{2} the following two matrices can be constructed: $\boldsymbol{H}^{(1)}=\left[\boldsymbol{A}_{m_{1}}^{\top}, \ldots, \boldsymbol{A}_{m_{\left|\mathcal{P}_{1}\right|}^{\top}}^{\top}\right]^{\top}, \boldsymbol{H}^{(2)}=$ $\left[\boldsymbol{A}_{\ell_{1}}^{\top}, \ldots, \boldsymbol{A}_{\ell_{\left|\mathcal{P}_{2}\right|}}^{\top}\right]^{\top}$, where $m_{t} \in \mathcal{P}_{1}$ and $\ell_{j} \in \mathcal{P}_{2}$. Furthermore, assume that
i) both $\boldsymbol{H}^{(1)}$ and $\boldsymbol{H}^{(2)}$ are sufficiently scattered;
ii) all $\boldsymbol{R}_{m_{t}, \ell_{j}}$'s for $m_{t} \in \mathcal{P}_{1}$ and $\ell_{j} \in \mathcal{P}_{2}$ are available; and
iii) for every $m \notin \mathcal{P}_{1} \cup \mathcal{P}_{2}$ there exists a $\boldsymbol{R}_{m, r}$ available, where $r \in \mathcal{P}_{1} \cup \mathcal{P}_{2}$.

Then, solving the coupled decomposition problem recovers \boldsymbol{A}_{m} for $m=1, \ldots, M$ up to a unified permutation ambiguity matrix.

Theorem 3 says...

- If we have two annotator groups \mathcal{P}_{1} and \mathcal{P}_{2} such that all the pairwise statistics across the group are available, then there may exist a construction as below

$$
\begin{aligned}
\boldsymbol{R} & =\left[\begin{array}{cccc}
\boldsymbol{R}_{m_{1}, \ell_{1}} & \boldsymbol{R}_{m_{1}, \ell_{2}} & \ldots & \boldsymbol{R}_{m_{1}, \ell_{\left|\mathcal{P}_{2}\right|}} \\
\vdots & \vdots & \cdots & \boldsymbol{R}_{m_{\left|\mathcal{P}_{2}\right|} \mid \ell_{\left|\mathcal{P}_{2}\right|}}
\end{array}\right] \\
& =\left[\begin{array}{c}
\boldsymbol{A}_{m_{\left|\mathcal{P}_{1}\right|}, \ell_{1}} \\
\vdots \\
\vdots \\
\boldsymbol{A}_{m_{\left|\mathcal{P}_{1}\right|}, \ell_{2}}
\end{array}\right] \boldsymbol{D}\left[\boldsymbol{A}_{\ell_{1}}^{\top}, \ldots, \boldsymbol{A}_{\left.\ell_{\left|\mathcal{P}_{2}\right|}^{\top}\right]}^{\top}\right] \underbrace{\boldsymbol{H}(1)}_{\boldsymbol{W}} \boldsymbol{D}(\underbrace{\boldsymbol{H}^{(2)}}_{\boldsymbol{H}})^{\top} .
\end{aligned}
$$

- If the rows of \boldsymbol{W} and \boldsymbol{H} satisfies a certain geometrical property called sufficiently scattered (SS) condition, then \boldsymbol{W} and \boldsymbol{H} are identifiable upto trivial ambiguity [Huang et al., 2014].

Sufficiently scattered \boldsymbol{W}

Seperable \boldsymbol{W}

- SS is much easier to satisfy relative to seperability.
- We do not need extremely well trained annotators for each class to satisfy SS.

Theorem 3 says...

- By solving the below proposed coupled decomposition problem, \boldsymbol{A}_{m} for $m=$ $1, \ldots, M$ can be estimated

$$
\begin{aligned}
\text { find } & \left\{\boldsymbol{A}_{m}\right\}_{m=1}^{M}, \boldsymbol{D} \\
\text { subject to } & \boldsymbol{R}_{m, \ell}=\boldsymbol{A}_{m} \boldsymbol{D} \boldsymbol{A}_{\ell}^{\top}, \forall m, \ell \in\{1, \ldots, M\} \\
& \mathbf{1}^{\top} \boldsymbol{A}_{m}=\mathbf{1}^{\top}, \boldsymbol{A}_{m} \geq \mathbf{0}, \forall m \\
& \mathbf{1}^{\top} \boldsymbol{d}=1, \boldsymbol{d} \geq \mathbf{0}
\end{aligned}
$$

Does SS condition favour more annotators?

Theorem 4: Let $\rho>0, \frac{\alpha}{2}>\varepsilon>0$, and assume that the rows of $\boldsymbol{H}^{(1)}$ and $\boldsymbol{H}^{(2)}$ are generated from \mathbb{R}^{K} uniformly at random. If the number of annotators satisfies $M \geq \Omega\left(\frac{(K-1)^{2}}{K \alpha^{2(K-2)} \varepsilon^{2}} \log \left(\frac{K(K-1)}{\rho}\right)\right)$, where $\alpha=1$ for $K=2$, $\alpha=2 / 3$ for $K=3$ and $\alpha=1 / 2$ for $K>3$, then with probability greater than or equal to $1-\rho, \boldsymbol{H}^{(1)}$ and $\boldsymbol{H}^{(2)}$ are ε-sufficiently scattered.

Figure 1: (ε-sufficiently scatterd)

Does SS condition favour more annotators?

Theorem 4: Let $\rho>0, \frac{\alpha}{2}>\varepsilon>0$, and assume that the rows of $\boldsymbol{H}^{(1)}$ and $\boldsymbol{H}^{(2)}$ are generated from \mathbb{R}^{K} uniformly at random. If the number of annotators satisfies $M \geq \Omega\left(\frac{(K-1)^{2}}{K \alpha^{2(K-2)} \varepsilon^{2}} \log \left(\frac{K(K-1)}{\rho}\right)\right)$, where $\alpha=1$ for $K=2$, $\alpha=2 / 3$ for $K=3$ and $\alpha=1 / 2$ for $K>3$, then with probability greater than or equal to $1-\rho, \boldsymbol{H}^{(1)}$ and $\boldsymbol{H}^{(2)}$ are ε-sufficiently scattered.

Figure 2: (ε-sufficiently scatterd)

Alternating Optimization KL Algorithm

- Kullback-Leibler (KL) divergence is the natural distance measure under proabability measures. Let \boldsymbol{R} and $\hat{\boldsymbol{R}}$ are two probability distribution matrices, then

$$
\begin{equation*}
D_{K L}(\boldsymbol{R} \| \hat{\boldsymbol{R}})=-\sum_{i, j} \boldsymbol{R}_{i j} \log \frac{\boldsymbol{R}_{i j}}{\hat{\boldsymbol{R}}_{i j}} \tag{1}
\end{equation*}
$$

- So we use KL divergence in our fitting probelm

$$
\begin{aligned}
\underset{\left\{\boldsymbol{A}_{m}\right\}_{m=1}^{M}, \boldsymbol{D}}{\operatorname{minimize}} & \sum_{m, \ell} D_{K L}\left(\boldsymbol{R}_{m, \ell} \| \boldsymbol{A}_{m} \boldsymbol{D} \boldsymbol{A}_{\ell}^{\top}\right) \\
\text { subject to } & \mathbf{1}^{\top} \boldsymbol{A}_{m}=\mathbf{1}^{\top}, \boldsymbol{A}_{m} \geq \mathbf{0}, \forall m \\
& \mathbf{1}^{\top} \boldsymbol{d}=1, \boldsymbol{d} \geq \mathbf{0}
\end{aligned}
$$

- It is a non-convex optimization. So, we use alternating optimization (AO) approach, by cyclically updating each parameters, solving the convex subproblems using mirror descent.

Experiment setup \& Results

- UCI datasets (https://archive.ics.uci.edu/ml/datasets.html) are considered
- For each dataset, we use different MATLAB classifiers to annotate the data samples

Table 1: Details of UCI Datasets.

UCI dataset name	\# classes	\# items	\# annotators
Adult	2	7017	10
Mushroom	2	6358	10
Nursery	4	3575	10

Experiment setup \& Results

- For training, we use 20% of the samples to act as training data
- In practice, not all samples are labeled by an annotator
- To simulate such a scenario, each of the trained algorithms is allowed to label a data sample with probability $p<1$. A smaller p means a more challenging scenario
- We use MAP estimator to predict the labels, e.g,

$$
\hat{y}_{\mathrm{MAP}}=\underset{k \in[K]}{\arg \max }\left[\log (\boldsymbol{d}(k))+\sum_{m=1}^{M} \log \left(\boldsymbol{A}_{m}\left(k_{m}, k\right)\right)\right]
$$

- We compare the performance with different baselines.

Results

Table 2: Classification Error (\%) on UCI Datasets

	Nursery			Mushroom			Adult		
Algorithms	$p=1$	$p=0.5$	$p=0.2$	$p=1$	$p=0.5$	$p=0.2$	$p=1$	$p=0.5$	$p=0.2$
MultiSPA	2.83	4.54	17.96	0.02	0.293	6.35	$\mathbf{1 5 . 7 1}$	$\mathbf{1 6 . 0 5}$	17.66
MultiSPA-KL	$\mathbf{2 . 7 2}$	$\mathbf{4 . 2 6}$	$\mathbf{1 3 . 0 6}$	$\mathbf{0 . 0 0}$	$\mathbf{0 . 1 5 2}$	$\mathbf{5 . 8 9}$	$\mathbf{1 5 . 6 6}$	$\mathbf{1 5 . 9 8}$	$\mathbf{1 7 . 6 3}$
MultiSPA-D\&S	$\mathbf{2 . 8 2}$	$\mathbf{4 . 4 4}$	13.39	$\mathbf{0 . 0 0}$	0.194	6.17	15.74	16.29	23.88
Spectral-D\&S	3.14	37.2	44.29	$\mathbf{0 . 0 0}$	0.198	6.17	15.72	16.31	23.97
TensorADMM	17.97	7.26	19.78	0.06	0.237	6.18	15.72	$\mathbf{1 6 . 0 5}$	25.08
MV-D\&S	2.92	66.48	66.61	$\mathbf{0 . 0 0}$	47.99	48.63	15.76	75.21	75.13
Minmax-entropy	3.63	26.31	$\mathbf{1 1 . 0 9}$	$\mathbf{0 . 0 0}$	$\mathbf{0 . 1 6 3}$	8.14	16.11	16.92	$\mathbf{1 5 . 6 4}$
EigenRatio	N / A	N / A	N / A	0.06	0.329	$\mathbf{5 . 9 7}$	15.84	16.28	17.69
KOS	4.21	6.07	13.48	0.06	0.576	6.42	17.19	24.97	38.29
Ghosh-SVD	N / A	N / A	N / A	0.06	0.329	$\mathbf{5 . 9 7}$	15.84	16.28	17.71
Majority Voting	2.94	4.83	19.75	0.14	0.566	6.57	15.75	16.21	20.57
Single Best	3.94	$\mathrm{~N} / \mathrm{A}$	N / A	0.00	$\mathrm{~N} / \mathrm{A}$	N / A	16.23	$\mathrm{~N} / \mathrm{A}$	N / A
Single Worst	15.65	$\mathrm{~N} / \mathrm{A}$	N / A	7.22	$\mathrm{~N} / \mathrm{A}$	N / A	19.27	$\mathrm{~N} / \mathrm{A}$	N / A

Experiment setup and Results

- The datasets annotated by Amazon Mechanical Turk (https://www.mturk.com) (AMT) workers are used here

Table 3: AMT Dataset description.

Dataset	\# classes	\# items	\# annotators	\# annotator labels
Bird	2	108	30	3240
RTE	2	800	164	8,000
TREC	2	19,033	762	88,385
Dog	4	807	52	7,354
Web	5	2,665	177	15,567

- We use MAP estimator to predict the labels, e.g,

$$
\hat{y}_{\mathrm{MAP}}=\underset{k \in[K]}{\arg \max }\left[\log (\boldsymbol{d}(k))+\sum_{m=1}^{M} \log \left(\boldsymbol{A}_{m}\left(k_{m}, k\right)\right)\right]
$$

Experiment setup and Results

Table 4: Classification Error (\%) and Run-time (sec) : AMT Datasets

Algorithms	TREC		Bluebird		RTE	
	$\mathbf{(\%)}$ Error	$\mathbf{(s e c) ~ T i m e ~}$	$\mathbf{(\%)}$ Error	(sec) Time	$\mathbf{(\%)}$ Error	(sec) Time
MultiSPA	31.47	50.68	13.88	0.07	8.75	0.28
MultiSPA-KL	$\mathbf{2 9 . 2 3}$	536.89	$\mathbf{1 1 . 1 1}$	1.94	$\mathbf{7 . 1 2}$	17.06
MultiSPA-D\&S	29.84	53.14	12.03	0.09	$\mathbf{7 . 1 2}$	0.32
Spectral-D\&S	$\mathbf{2 9 . 5 8}$	919.98	12.03	1.97	$\mathbf{7 . 1 2}$	6.40
TensorADMM	N/A	N/A	12.03	2.74	$\mathrm{~N} / \mathrm{A}$	N/A
MV-D\&S	30.02	3.20	12.03	0.02	7.25	0.07
Minmax-entropy	91.61	352.36	$\mathbf{8 . 3 3}$	3.43	7.50	9.10
EigenRatio	43.95	1.48	27.77	0.02	9.01	0.03
KOS	51.95	9.98	$\mathbf{1 1 . 1 1}$	0.01	39.75	0.03
GhoshSVD	43.03	11.62	27.77	0.01	49.12	0.03
Majority Voting	34.85	N/A	21.29	$\mathrm{~N} / \mathrm{A}$	10.31	$\mathrm{~N} / \mathrm{A}$

Experiment setup and Results

Table 5: Classification Error (\%) and Run-time (sec) : AMT Datasets

Algorithms	Web		Dog	
	$\mathbf{(\%)}$ Error	(sec) Time	$\mathbf{(\%)}$ Error	(sec) Time
MultiSPA	15.22	0.54	17.09	0.07
MultiSPA-KL	$\mathbf{1 4 . 5 8}$	12.34	$\mathbf{1 5 . 4 8}$	15.88
MultiSPA-D\&S	15.11	0.84	$\mathbf{1 6 . 1 1}$	0.12
Spectral-D\&S	16.88	179.92	17.84	51.16
TensorADMM	N / A	N / A	17.96	603.93
MV-D\&S	16.02	0.28	15.86	0.04
Minmax-entropy	$\mathbf{1 1 . 5 1}$	26.61	16.23	7.22
EigenRatio	N / A	N / A	N / A	N / A
KOS	42.93	0.31	31.84	0.13
GhoshSVD	N / A	N / A	N / A	N / A
Majority Voting	26.93	$\mathrm{~N} / \mathrm{A}$	17.91	$\mathrm{~N} / \mathrm{A}$

Conclusion \& Future direction

- We proposed a second order statistics based approach for identifiability to the Dawid-Skene model for crowdsourcing
- The proposed multiSPA algorithm is simple, light weight and need lower sample complexity compared to existing tensor based methods
- We also proposed an approach with enhanced identifiabity and provided an alternating optimization based algorithm
- We supported our theoretical analysis using experimental results.
- Potential future works:
- Analyze the dependent annotator and dependent data scenario.
- Faster algorithm for the proposed coupled decomposition problem.

References

S. Arora, R. Ge, Y. Halpern, D. Mimno, A. Moitra, D. Sontag, Y. Wu, and M. Zhu. A practical algorithm for topic modeling with provable guarantees. In Proceedings of ICML, 2013.

Alexander Philip Dawid and Allan M Skene. Maximum likelihood estimation of observer error-rates using the em algorithm. Applied statistics, pages 20-28, 1979.
D. Donoho and V. Stodden. When does non-negative matrix factorization give a correct decomposition into parts? In Advances in neural information processing systems, volume 16, 2003.
K. Huang, N. D. Sidiropoulos, and A. Swami. Non-negative matrix factorization revisited: New uniqueness results and algorithms. IEEE Trans. Signal Process., 62 (1):211-224, Jan. 2014.

Panagiotis A Traganitis, Alba Pages-Zamora, and Georgios B Giannakis. Blind multiclass ensemble classification. IEEE Trans. Signal Process., 66(18):47374752, 2018.

Yuchen Zhang, Xi Chen, Dengyong Zhou, and Michael I Jordan. Spectral methods meet em: A provably optimal algorithm for crowdsourcing. In Advances in neural information processing systems, pages 1260-1268, 2014.

Synthetic Data Experiments

- No of annotators $M=25$, no of classes $K=3$, no of items $N=10000$.
- Case 1: A randomly chosen annotator is assigned identity matrix as confusion matrix.

Table 6: Average MSE of the confusion matrices \boldsymbol{A}_{m} for case 1.

Algorithms	$p=0.2$	$p=0.3$	$p=0.5$	$p=1$
MutliSPA	0.0184	0.0083	0.0063	0.0034
MultiSPA-KL	$\mathbf{0 . 0 0 1 9}$	$\mathbf{0 . 0 0 0 9}$	$\mathbf{0 . 0 0 0 4}$	$\mathbf{1 . 7 3 E - 0 4}$
Spectral D\&S	0.0320	0.0112	0.0448	$1.74 \mathrm{E}-04$
TensorADMM	0.0026	0.0011	0.0005	$1.88 \mathrm{E}-04$
MV-D\&S	-	-	0.0173	$1.84 \mathrm{E}-04$

Synthetic Data Experiments

- No of annotators $M=25$, no of classes $K=3$, no of items $N=10000$.
- Case 2: A randomly chosen annotator is assigned a diagonally dominant confusion matrix.

Table 7: Average MSE of the confusion matrices \boldsymbol{A}_{m} for case 2.

Algorithms	$p=0.2$	$p=0.3$	$p=0.5$	$p=1$
MutliSPA	0.0229	0.0188	0.0115	0.0102
MultiSPA-KL	$\mathbf{0 . 0 0 2 9}$	$\mathbf{0 . 0 0 1 4}$	$\mathbf{0 . 0 0 0 5}$	$\mathbf{1 . 6 7 E}-04$
Spectral D\&S	0.0348	0.0265	0.0391	$\mathbf{1 . 6 7 E - 0 4}$
TensorADMM	0.0031	0.0016	0.0006	$1.93 \mathrm{E}-04$
MV-D\&S	-	-	0.0028	$5.88 \mathrm{E}-04$

Synthetic Data Experiments

Table 8: Classification Error(\%) \& Averge run-time when $\boldsymbol{d}=\left[\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right]^{\top}$

Algorithms	$p=0.2$	$p=0.3$	$p=0.5$	Run-time(sec)
MultiSPA	37.24	26.39	19.21	0.049
MultiSPA-KL	$\mathbf{3 1 . 7 1}$	$\mathbf{2 1 . 1 0}$	$\mathbf{1 2 . 7 9}$	18.07
MultiSPA-D\&S	$\mathbf{3 1 . 9 5}$	$\mathbf{2 1 . 1 1}$	$\mathbf{1 2 . 8 0}$	0.069
Spectral-D\&S	46.37	23.92	12.89	27.17
TensorADMM	32.16	21.34	12.91	56.09
MV-D\&S	66.91	57.92	13.09	0.096
Minmax-entropy	62.83	65.50	67.31	200.91
KOS	71.47	61.05	13.12	5.653
Majority Voting	67.57	68.37	71.39	-

Synthetic Data Experiments

Table 9: Classification Error(\%) \& Averge run-time when $\boldsymbol{d}=\left[\frac{1}{6}, \frac{2}{3}, \frac{1}{6}\right]^{\top}$

Algorithms	$p=0.2$	$p=0.3$	$p=0.5$	Run-time(sec)
MultiSPA	$\mathbf{3 0 . 7 5}$	$\mathbf{2 1 . 2 9}$	$\mathbf{1 3 . 6 7}$	0.105
MultiSPA-KL	$\mathbf{2 3 . 1 9}$	$\mathbf{1 6 . 6 2}$	$\mathbf{1 0 . 1 3}$	18.93
MultiSPA-D\&S	40.12	32.1	21.46	0.122
Spectral-D\&S	56.17	49.41	39.17	28.01
TensorADMM	34.17	25.53	11.97	152.76
MV-D\&S	83.14	83.15	32.98	0.090
Minmax-entropy	83.04	63.08	74.29	232.82
KOS	70.79	67.55	78.00	6.19
Majority Voting	65.37	65.57	66.06	-

Synthetic Data Experiments

Figure 3: MSE of the confusion matrices for various values of M

UCI Dataset Experiments - Run-time performance

Table 10: Average runtime (sec) for UCI datset experiments.

Algorithms	Nursery	Mushroom	Adult
MultiSPA	0.021	0.012	0.018
MultiSPA-KL	1.112	0.663	0.948
MultiSPA-D\&S	0.035	0.027	0.027
Spectral-D\&S	10.09	0.496	0.512
TensorADMM	5.811	0.743	4.234
MV-D\&S	0.009	0.007	0.008
Minmax-entropy	19.94	2.304	6.959
EigenRatio	-	0.005	0.007
KOS	0.768	0.085	0.118
Ghosh-SVD	-	0.081	0.115

Resolving Permutation ambiguity

- SPA-estimated $\hat{\boldsymbol{A}}_{m}$ is up to column permutation, even if there is no noise, i.e., $\hat{\boldsymbol{A}}_{m}=\boldsymbol{A}_{m} \boldsymbol{\Pi}_{m}, \Pi_{m}$ is the permutation matrix.
- A very practical heuristic can be used to resolve permutation ambiguity - if one believes that all the annotators are reasonably trained, then we can rearrange the columns of $\hat{\boldsymbol{A}}_{m}$ so that it is diagonal dominant
- Once \boldsymbol{A}_{m} are identified, \boldsymbol{d} can be estimated by $\boldsymbol{D}=\boldsymbol{A}_{m}^{-1} \boldsymbol{R}_{m, \ell}\left(\boldsymbol{A}_{\ell}^{\top}\right)^{-1}$ using any $m, l \in\{1, \ldots, M\}$

Experiment setup and Results

- The datasets annotated by Amazon Mechanical Turk (https://www.mturk.com) (AMT) workers are used here

Table 11: AMT Dataset Description

Dataset name	\# classes	\# items	\# annotators
Bluebird	2	108	39
RTE	2	800	20
Dog	4	807	20

Experiment setup and Results

Classification Error (\%) : AMT Datasets

Algorithms	RTE	Dog	Bluebird
MultiSPA	17.87	24.9	12.96
MultiSPA-KL	$\mathbf{1 7 . 3 7}$	$\mathbf{2 4 . 8 9}$	11.11
Spectral-D\&S	17.75	25.52	$\mathbf{1 0 . 1 9}$
TensorADMM	$\mathbf{1 7 . 5 0}$	40.64	$\mathbf{1 0 . 1 9}$
MV-D\&S	18.75	$\mathbf{2 1 . 3 2}$	11.11
Majority Voting	33.62	26.59	24.07
KOS	40.12	41.38	11.11

Successive Projection Algorithm (SPA)

- An algebraic algorithm exists which handles index identification known as Successive Projection Approximation(SPA) [Arora et al., 2013].
- Consider a column in \bar{Z}_{m}, then,

$$
\begin{array}{rlrl}
\left\|\overline{\boldsymbol{Z}}_{m}(:, q)\right\|_{2} & =\left\|\sum_{k=1}^{K} \boldsymbol{A}_{m}(:, k) \overline{\boldsymbol{H}}_{m}(q, k)\right\|_{2}, & & \text { (data model) } \\
& \leq \sum_{k=1}^{K}\left\|\boldsymbol{A}_{m}(:, k) \overline{\boldsymbol{H}}_{m}(q, k)\right\|_{2}, & & \quad \text { (triangular inequality) } \\
& =\sum_{k=1}^{K} \overline{\boldsymbol{H}}_{m}(q, k)\left\|\boldsymbol{A}_{m}(:, k)\right\|_{2}, & & \text { (non-negetivity of } \overline{\boldsymbol{H}}_{m} \text {) } \\
& \leq \max _{k=1, \ldots, K}\left\|\boldsymbol{A}_{m}(:, k)\right\|_{2}, \quad \text { (rows of } \overline{\boldsymbol{H}}_{m} \text { sum to one) }
\end{array}
$$

Successive Projection Algorithm (SPA)

- By this inequality, the column index corresponding to first vertex, \hat{q}_{1} is identified as,

$$
\begin{equation*}
\hat{q}_{1}=\arg \max _{q}\left\|\bar{Z}_{m}(:, q)\right\|_{2}^{2} \tag{2}
\end{equation*}
$$

- Then all the remaining columns of \bar{Z}_{m} are projected to the orthogonal complement of the selected column, we repeat the vertex identification for $K-1$ times.
- We repeat this index identification procedure for every m and thus all, \boldsymbol{A}_{m} 's are identified and name our approach MultiSPA.

Successive Projection Algorithm (SPA)

- By this inequality, the column index corresponding to first vertex, \hat{q}_{1} is identified as,

$$
\begin{equation*}
\hat{q}_{1}=\arg \max _{q}\left\|\bar{Z}_{m}(:, q)\right\|_{2}^{2} \tag{3}
\end{equation*}
$$

- Then all the remaining columns of \bar{Z}_{m} are projected to the orthogonal complement of the selected column, we repeat the vertex identification for $K-1$ times.
- We repeat this index identification procedure for every m, thus all \boldsymbol{A}_{m} 's are identified and name our approach MultiSPA.

The algorithm works under the assumption $\overline{\boldsymbol{H}}_{m}\left(\Lambda_{q},:\right)=\boldsymbol{I}_{K}$.
But what does this mean in crowdsourcing?

[^0]: ${ }^{1}$ Source : https://www.normshield.com/machine-learning-in-cyber-security-domain-1-fundamentals/

[^1]: ${ }^{2}$ Source : http://wires.wiley.com/WileyCDA/WiresArticle/wisId-WIDM1288.html

